Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(43): 11006-11011, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297406

RESUMO

Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightly-linked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation.


Assuntos
Flores/genética , Fluxo Gênico/genética , Ilhas Genômicas/genética , Seleção Genética/genética , Antirrhinum/genética , Cromossomos de Plantas/genética , Cor , Especiação Genética , Genoma de Planta/genética
2.
Curr Biol ; 27(17): 2610-2622.e3, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28867204

RESUMO

Boundary domain genes, expressed within or around organ primordia, play a key role in the formation, shaping, and subdivision of planar plant organs, such as leaves. However, the role of boundary genes in formation of more elaborate 3D structures, which also derive from organ primordia, remains unclear. Here we analyze the role of the boundary domain gene CUPULIFORMIS (CUP) in formation of the ornate Antirrhinum flower shape. We show that CUP expression becomes cleared from boundary subdomains between petal primordia, most likely contributing to formation of congenitally fused petals (sympetally) and modulation of growth at sinuses. At later stages, CUP is activated by dorsoventral genes in an intermediary region of the corolla. In contrast to its role at organ boundaries, intermediary CUP activity leads to growth promotion rather than repression and formation of the palate, lip, and characteristic folds of the closed Antirrhinum flower. Intermediary expression of CUP homologs is also observed in related sympetalous species, Linaria and Mimulus, suggesting that changes in boundary gene activity have played a key role in the development and evolution of diverse 3D plant shapes.


Assuntos
Antirrhinum/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Antirrhinum/crescimento & desenvolvimento , Flores/genética
3.
Elife ; 62017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28166865

RESUMO

Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals.


Assuntos
Antirrhinum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Antirrhinum/genética , Flores/genética
4.
Dev Cell ; 38(6): 579-83, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27676429

RESUMO

Computational modeling of tissue morphogenesis reveals how spatiotemporal patterns of gene activity control tissue shape by introducing several types of tissue conflict. These conflicts reflect genetic modulation of processes that influence the cellular mechanical properties and may underlie the enormous diversity of forms that have evolved in plants and animals.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Morfogênese/genética , Desenvolvimento Vegetal/genética , Biologia Computacional , Variação Genética
5.
Plant Cell ; 28(9): 2079-2096, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27553356

RESUMO

Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth.

6.
Proc Natl Acad Sci U S A ; 113(9): 2448-53, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884205

RESUMO

Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.


Assuntos
Antocianinas/biossíntese , Flavonóis/biossíntese , Mimulus/metabolismo , Pigmentos Biológicos/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Plantas/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
7.
Dev Cell ; 15(3): 437-447, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18804438

RESUMO

Plants species diverge with regard to the time and place where they make flowers. Flowers can develop from apical meristems, lateral meristems, or both, resulting in three major inflorescence types known as racemes, cymes, and panicles, respectively. The mechanisms that determine a racemose architecture have been uncovered in Arabidopsis and Antirrhinum. To understand how cymes are specified, we studied mutations that alter the petunia inflorescence. Here we show that EVERGREEN (EVG) encodes a WOX homeodomain protein, which is exclusively expressed in incipient lateral inflorescence meristems (IMs), promoting their separation from the apical floral meristem (FM). This is essential for activation of DOUBLE TOP and specification of floral identity. Mutations that change the cymose petunia inflorescence into a solitary flower fully suppress the evg phenotype. Our data suggest a key role for EVG in the diversification of inflorescence architectures and reveal an unanticipated link between the proliferation and identity of meristems.


Assuntos
Flores/anatomia & histologia , Proteínas de Homeodomínio/metabolismo , Petunia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Topos Floridos/genética , Topos Floridos/metabolismo , Flores/fisiologia , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Hibridização In Situ , Meristema/genética , Meristema/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Petunia/anatomia & histologia , Petunia/genética , Fenótipo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Alinhamento de Sequência
8.
Plant Cell ; 20(8): 2033-48, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18713949

RESUMO

Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns.


Assuntos
Proteínas de Arabidopsis/genética , Flores/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas F-Box/metabolismo , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/ultraestrutura , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...