Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 17150, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433831

RESUMO

Fragile X syndrome (FXS), a disorder of synaptic development and function, is the most prevalent genetic form of intellectual disability and autism spectrum disorder. FXS mouse models display clinically-relevant phenotypes, such as increased anxiety and hyperactivity. Despite their availability, so far advances in drug development have not yielded new treatments. Therefore, testing novel drugs that can ameliorate FXS' cognitive and behavioral impairments is imperative. ANAVEX2-73 (blarcamesine) is a sigma-1 receptor (S1R) agonist with a strong safety record and preliminary efficacy evidence in patients with Alzheimer's disease and Rett syndrome, other synaptic neurodegenerative and neurodevelopmental disorders. S1R's role in calcium homeostasis and mitochondrial function, cellular functions related to synaptic function, makes blarcamesine a potential drug candidate for FXS. Administration of blarcamesine in 2-month-old FXS and wild type mice for 2 weeks led to normalization in two key neurobehavioral phenotypes: open field test (hyperactivity) and contextual fear conditioning (associative learning). Furthermore, there was improvement in marble-burying (anxiety, perseverative behavior). It also restored levels of BDNF, a converging point of many synaptic regulators, in the hippocampus. Positron emission tomography (PET) and ex vivo autoradiographic studies, using the highly selective S1R PET ligand [18F]FTC-146, demonstrated the drug's dose-dependent receptor occupancy. Subsequent analyses also showed a wide but variable brain regional distribution of S1Rs, which was preserved in FXS mice. Altogether, these neurobehavioral, biochemical, and imaging data demonstrates doses that yield measurable receptor occupancy are effective for improving the synaptic and behavioral phenotype in FXS mice. The present findings support the viability of S1R as a therapeutic target in FXS, and the clinical potential of blarcamesine in FXS and other neurodevelopmental disorders.


Assuntos
Síndrome do Cromossomo X Frágil/tratamento farmacológico , Furanos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Furanos/farmacocinética , Furanos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Fenótipo , Ligação Proteica , Receptores sigma/metabolismo , Receptor Sigma-1
3.
Pharmacol Biochem Behav ; 187: 172796, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704481

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder that is associated in most cases with mutations in the transcriptional regulator MECP2. At present, there are no effective treatments for the disorder. Despite recent advances in RTT genetics and neurobiology, most drug development programs have focused on compounds targeting the IGF-1 pathway and no pivotal trial has been completed as yet. Thus, testing novel drugs that can ameliorate RTT's clinical manifestations is a high priority. ANAVEX2-73 (blarcamesine) is a Sigma-1 receptor agonist and muscarinic receptor modulator with a strong safety record and preliminary evidence of efficacy in patients with Alzheimer's disease. Its role in calcium homeostasis and mitochondrial function, cellular functions that underlie pathological processes and compensatory mechanisms in RTT, makes blarcamesine an intriguing drug candidate for this disorder. Mice deficient in MeCP2 have a range of physiological and neurological abnormalities that mimic the human syndrome. We tested blarcamesine in female heterozygous mice carrying one null allele of Mecp2 (HET) using a two-tier approach, with age-appropriate tests. Administration of the drug to younger and older adult mice resulted in improvement in multiple motor, sensory, and autonomic phenotypes of relevance to RTT. The latter included motor coordination and balance, acoustic and visual responses, hindlimb clasping, and apnea in expiration. In line with previous animal and human studies, blarcamesine also showed a good safety profile in this mouse model of RTT. Clinical studies in RTT with blarcamesine are ongoing.


Assuntos
Furanos/farmacologia , Furanos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Síndrome de Rett/tratamento farmacológico , Animais , Apneia/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Furanos/administração & dosagem , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Destreza Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Reflexo de Sobressalto/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Resultado do Tratamento , Acuidade Visual/efeitos dos fármacos , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA