Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1413: 191-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195532

RESUMO

Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.


Assuntos
Pulmão , Alvéolos Pulmonares , Matriz Extracelular , Dispositivos Lab-On-A-Chip
3.
Mol Autism ; 11(1): 47, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517751

RESUMO

BACKGROUND: In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca2+ signal modulator with slow-onset kinetics. In Purkinje cells of PV-/- mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca2+ sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner. METHODS: The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV-/-) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses. RESULTS: PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV-/- Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV-/- Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV-/- mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV-/- mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age. CONCLUSION: PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca2+ signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Dendritos/metabolismo , Suscetibilidade a Doenças , Tamanho Mitocondrial/genética , Neurônios/metabolismo , Parvalbuminas/deficiência , Alelos , Animais , Biomarcadores , Dendritos/patologia , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Genes Reporter , Predisposição Genética para Doença , Imuno-Histoquímica , Interneurônios/metabolismo , Espaço Intracelular , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...