Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 146, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413850

RESUMO

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have been reported to have contrasting effects on plant physiology, while their effects on sugar, protein, and amino acid metabolism are poorly understood. In this work, we evaluated the effects of TiO2 NPs on physiological and agronomical traits of tomato (Solanum lycopersicum L.) seedlings. Tomato seeds were treated with TiO2 NPs (1000 and 2000 mg L- 1), TiO2 microparticles (µPs, 2000 mg L- 1) as the size control, and ultrapure water as negative control. RESULTS: The dry matter of stems (DMs), leaves (DMl) and total dry matter (DMt) decreased as particle concentration increased. This trend was also observed in the maximum quantum yield of light-adapted photosystem II (PSII) (Fv´/Fm´), the effective quantum yield of PSII (ΦPSII), and net photosynthesis (Pn). The concentrations of sugars, total soluble proteins, and total free amino acids were unaffected, but there were differences in the daily dynamics of these compounds among the treatments. CONCLUSION: Our results suggest that treating tomato seeds with TiO2 might affect PSII performance, net photosynthesis and decrease biomass production, associated with a concentration- and size-related effect of TiO2 particles.


Assuntos
Nanopartículas , Solanum lycopersicum , Titânio , Plântula/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
2.
Nanotechnology ; 31(36): 365704, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32460262

RESUMO

Composites of nanostructured porous silicon and silver (nPSi-Ag) have attracted great attention due to the wide spectrum of applications in fields such as microelectronics, photonics, photocatalysis and bioengineering, Among the different methods for the fabrication of nanostructured composite materials, dip and spin-coating are simple, versatile, and cost-effective bottom-up technologies to provide functional coatings. In that sense, we aimed at fabricating nPSi-Ag composite layers. Using nPSi layers with pore diameter of 30 nm, two types of thin-film techniques were systematically compared: cyclic dip-coating (CDC) and cyclic spin-coating (CSC). CDC technique formed a mix of granular and flake-like structures of metallic Ag, and CSC method favored the synthesis of flake-like structures with Ag and Ag2O phases. Flakes obtained by CDC and CSC presented a width of 110 nm and 70 nm, respectively. Particles also showed a nanostructure surface with features around 25 nm. According to the results of EDX and RBS, integration of Ag into nPSi was better achieved using the CDC technique. SERS peaks related to chitosan adsorbed on Ag nanostructures were enhanced, especially in the nPSi-Ag composite layers fabricated by CSC compared to CDC, which was confirmed by FTDT simulations. These results show that CDC and CSC produce different nPSi-Ag composite layers for potential applications in bioengineering and photonics.

3.
Plant Physiol Biochem ; 130: 408-417, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30064097

RESUMO

The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO2, TiO2, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO2 and TiO2 nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Titânio/efeitos adversos
4.
Nanoscale Res Lett ; 7(1): 364, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22748115

RESUMO

Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 µm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...