Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3595, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739121

RESUMO

Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Ciclo Celular , Diferenciação Celular/genética , Granulócitos/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Cancer Res ; 82(11): 2141-2155, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35311954

RESUMO

The protein tyrosine phosphatase SHP2 is crucial for oncogenic transformation of acute myeloid leukemia (AML) cells expressing mutated receptor tyrosine kinases. SHP2 is required for full RAS-ERK activation to promote cell proliferation and survival programs. Allosteric SHP2 inhibitors act by stabilizing SHP2 in its autoinhibited conformation and are currently being tested in clinical trials for tumors with overactivation of the RAS/ERK pathway, alone and in various drug combinations. In this study, we established cells with acquired resistance to the allosteric SHP2 inhibitor SHP099 from two FLT3-ITD (internal tandem duplication)-positive AML cell lines. Label-free and isobaric labeling quantitative mass spectrometry-based phosphoproteomics of these resistant models demonstrated that AML cells can restore phosphorylated ERK (pERK) in the presence of SHP099, thus developing adaptive resistance. Mechanistically, SHP2 inhibition induced tyrosine phosphorylation and feedback-driven activation of the FLT3 receptor, which in turn phosphorylated SHP2 on tyrosine 62. This phosphorylation stabilized SHP2 in its open conformation, preventing SHP099 binding and conferring resistance. Combinatorial inhibition of SHP2 and MEK or FLT3 prevented pERK rebound and resistant cell growth. The same mechanism was observed in a FLT3-mutated B-cell acute lymphoblastic leukemia cell line and in the inv(16)/KitD816Y AML mouse model, but allosteric inhibition of Shp2 did not impair the clonogenic ability of normal bone marrow progenitors. Together, these results support the future use of SHP2 inhibitor combinations for clinical applications. SIGNIFICANCE: These findings suggest that combined inhibition of SHP2 and FLT3 effectively treat FLT3-ITD-positive AML, highlighting the need for development of more potent SHP2 inhibitors and combination therapies for clinical applications.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Piperidinas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Pirimidinas , Regulação Alostérica , Animais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Mutação , Fosforilação , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Tirosina/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
3.
Mol Cancer Ther ; 21(5): 703-714, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247918

RESUMO

Currently, the majority of patients with acute myeloid leukemia (AML) still die of their disease due to primary resistance or relapse toward conventional reactive oxygen species (ROS)- and DNA damage-inducing chemotherapy regimens. Herein, we explored the therapeutic potential to enhance chemotherapy response in AML, by targeting the ROS scavenger enzyme MutT homolog 1 (MTH1, NUDT1), which protects cellular integrity through prevention of fatal chemotherapy-induced oxidative DNA damage. We demonstrate that MTH1 is a potential druggable target expressed by the majority of patients with AML and the inv(16)/KITD816Y AML mouse model mimicking the genetics of patients with AML exhibiting poor response to standard chemotherapy (i.e., anthracycline & cytarabine). Strikingly, combinatorial treatment of inv(16)/KITD816Y AML cells with the MTH1 inhibitor TH1579 and ROS- and DNA damage-inducing standard chemotherapy induced growth arrest and incorporated oxidized nucleotides into DNA leading to significantly increased DNA damage. Consistently, TH1579 and chemotherapy synergistically inhibited growth of clonogenic inv(16)/KITD816Y AML cells without substantially inhibiting normal clonogenic bone marrow cells. In addition, combinatorial treatment of inv(16)/KITD816Y AML mice with TH1579 and chemotherapy significantly reduced AML burden and prolonged survival compared with untreated or single treated mice. In conclusion, our study provides a rationale for future clinical studies combining standard AML chemotherapy with TH1579 to boost standard chemotherapy response in patients with AML. Moreover, other cancer entities treated with ROS- and DNA damage-inducing chemo- or radiotherapies might benefit therapeutically from complementary treatment with TH1579.


Assuntos
Leucemia Mieloide Aguda , Nucleotídeos , Animais , Dano ao DNA , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Estresse Oxidativo , Pirimidinas , Espécies Reativas de Oxigênio , Saneamento
5.
Cancer Drug Resist ; 4(4): 984-995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582388

RESUMO

Resistance of cancer patients to DNA damaging radiation therapy and chemotherapy remains a major problem in the clinic. The current review discusses the molecular mechanisms of therapy resistance in acute myeloid leukemia (AML) conferred by cooperative chemotherapy-induced DNA damage response (DDR) and mutational activation of PI3K/AKT signaling. In addition, strategies to overcome resistance are discussed, with particular focus on studies underpinning the vast potential of therapies combining standard chemotherapy AML regimens with small molecule inhibitors targeting key regulatory hubs at the interface of DDR and oncogenic signaling pathways.

6.
Leukemia ; 35(7): 2030-2042, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33299144

RESUMO

Most AML patients exhibit mutational activation of the PI3K/AKT signaling pathway, which promotes downstream effects including growth, survival, DNA repair, and resistance to chemotherapy. Herein we demonstrate that the inv(16)/KITD816Y AML mouse model exhibits constitutive activation of PI3K/AKT signaling, which was enhanced by chemotherapy-induced DNA damage through DNA-PK-dependent AKT phosphorylation. Strikingly, inhibitors of either PI3K or DNA-PK markedly reduced chemotherapy-induced AKT phosphorylation and signaling leading to increased DNA damage and apoptosis of inv(16)/KITD816Y AML cells in response to chemotherapy. Consistently, combinations of chemotherapy and PI3K or DNA-PK inhibitors synergistically inhibited growth and survival of clonogenic AML cells without substantially inhibiting normal clonogenic bone marrow cells. Moreover, treatment of inv(16)/KITD816Y AML mice with combinations of chemotherapy and PI3K or DNA-PK inhibitors significantly prolonged survival compared to untreated/single-treated mice. Mechanistically, our findings implicate that constitutive activation of PI3K/AKT signaling driven by mutant KIT, and potentially other mutational activators such as FLT3 and RAS, cooperates with chemotherapy-induced DNA-PK-dependent activation of AKT to promote survival, DNA repair, and chemotherapy resistance in AML. Hence, our study provides a rationale to select AML patients exhibiting constitutive PI3K/AKT activation for simultaneous treatment with chemotherapy and inhibitors of DNA-PK and PI3K to improve chemotherapy response and clinical outcome.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Sci Adv ; 5(7): eaaw4304, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309149

RESUMO

The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human CEBPA mutant AML and the corresponding Cebpa Lp30 mouse model, we identified Nt5e, encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target.


Assuntos
5'-Nucleotidase/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Mutação , Animais , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Camundongos , Motivos de Nucleotídeos , Prognóstico , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética
9.
Oncotarget ; 8(27): 44605-44624, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28574834

RESUMO

A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunoconjugados/farmacologia , Lectinas de Ligação a Manose/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Receptores Mitogênicos/antagonistas & inibidores , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Sobrevivência Celular , Modelos Animais de Doenças , Endocitose , Expressão Gênica , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Leucemia/mortalidade , Leucemia/patologia , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Terapia de Alvo Molecular , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Sarcoma/mortalidade , Sarcoma/patologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Blood ; 128(23): 2683-2693, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27621309

RESUMO

Chronic myeloid leukemia (CML) is currently treated with tyrosine kinase inhibitors, but these do not effectively eliminate the CML stem cells. As a consequence, CML stem cells persist and cause relapse in most patients upon drug discontinuation. Furthermore, no effective therapy exists for the advanced stages of the disease. Interleukin-1 receptor accessory protein (IL1RAP; IL1R3) is a coreceptor of interleukin-1 receptor type 1 and has been found upregulated on CML stem cells. Here, we show that primitive (CD34+CD38-) CML cells, in contrast to corresponding normal cells, express a functional interleukin-1 (IL-1) receptor complex and respond with NF-κB activation and marked proliferation in response to IL-1. IL1RAP antibodies that inhibit IL-1 signaling could block these effects. In vivo administration of IL1RAP antibodies in mice transplanted with chronic and blast phase CML cells resulted in therapeutic effects mediated by murine effector cells. These results provide novel insights into the role of IL1RAP in CML and a strong rationale for the development of an IL1RAP antibody therapy to target residual CML stem cells.


Assuntos
Anticorpos Antineoplásicos/farmacologia , Proteína Acessória do Receptor de Interleucina-1/antagonistas & inibidores , Interleucina-1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Animais , Feminino , Humanos , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Transfusion ; 56(5): 1088-95, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26991781

RESUMO

BACKGROUND: Cryopreserved hematopoietic stem cell products are widely used for certain hematologic malignancies. Dimethyl sulfoxide (DMSO) is the most widely used cryoprotective agent (CPA) today, but due to indications of cellular toxicity, changes of the cellular epigenetic state, and patient-related side effects, there is an increasing demand for DMSO-free alternatives. We therefore investigated whether Pentaisomaltose (PIM), a low-molecular-weight carbohydrate (1 kDa), can be used for cryopreservation of peripheral blood stem cells, more specifically hematopoietic progenitor cell apheresis (HPC(A)) product. STUDY DESIGN AND METHODS: We cryopreserved patient or donor HPC(A) products using 10% DMSO or 16% PIM and quantified the recovery of CD34+ cells and CD34+ subpopulations by multicolor flow cytometry. In addition, we compared the frequency of HPCs after DMSO and PIM cryopreservation using the colony-forming cells (CFCs) assay. RESULTS: The mean CD34+ cell recovery was 56.3 ± 23.7% (11.4%-97.3%) and 58.2 ± 10.0% (45.7%-76.9%) for 10% DMSO and 16% PIM, respectively. The distribution of CD34+ cell subpopulations was similar when comparing DMSO or PIM as CPA. CFC assay showed mean colony numbers of 70.7 ± 25.4 (range, 37.8-115.5) and 67.7 ± 15.7 (range, 48-86) for 10% DMSO and 16% PIM, respectively. CONCLUSION: Our findings demonstrate that PIM cryopreservation of HPC(A) products provides recovery of CD34+ cells, CD34+ subpopulations, and CFCs similar to that of DMSO cryopreservation and therefore may have the potential to be used for cryopreservation of peripheral blood stem cells.


Assuntos
Criopreservação , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Isomaltose/farmacologia , Células-Tronco de Sangue Periférico/efeitos dos fármacos , Antígenos CD34/análise , Remoção de Componentes Sanguíneos/métodos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Oligossacarídeos/farmacologia , Células-Tronco de Sangue Periférico/citologia , Células-Tronco/citologia
12.
Cell Rep ; 4(4): 642-8, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23954783

RESUMO

Prospective isolation is critical for understanding the cellular and molecular aspects of stem cell heterogeneity. Here, we identify the cell surface antigen CD9 as a positive marker that provides a simple alternative for hematopoietic stem cell isolation at high purity. Crucially, CD9 affords the capture of all hematopoietic stem cells in murine bone marrow in the absence of contaminating populations that lack authentic stem cell function. Using CD9 as a tool to subdivide hematopoietic stem-cell-containing populations, we provide evidence for heterogeneity at the cellular, functional, and molecular levels.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Células-Tronco Hematopoéticas/citologia , Tetraspanina 29/análise , Animais , Biomarcadores/análise , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/classificação , Camundongos , Camundongos Endogâmicos C57BL
13.
Blood ; 118(13): 3613-21, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21813452

RESUMO

Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent.


Assuntos
Dosagem de Genes/fisiologia , Duplicação Gênica/fisiologia , Perda de Heterozigosidade/fisiologia , Proteínas de Membrana/genética , Transtornos Mieloproliferativos/genética , Tirosina Quinase 3 Semelhante a fms/fisiologia , Alelos , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células da Medula Óssea/fisiologia , Proliferação de Células , Células Cultivadas , Técnicas de Introdução de Genes , Perda de Heterozigosidade/genética , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Sequências de Repetição em Tandem/genética , Sequências de Repetição em Tandem/fisiologia , Tirosina Quinase 3 Semelhante a fms/metabolismo
14.
Blood ; 118(6): 1534-43, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21670467

RESUMO

Hypoxia is emerging as an important characteristic of the hematopoietic stem cell (HSC) niche, but the molecular mechanisms contributing to quiescence, self-renewal, and survival remain elusive. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis and hematopoiesis. Its expression is commonly regulated by hypoxia-inducible factors (HIF) that are functionally induced in low-oxygen conditions and that activate transcription by binding to hypoxia-response elements (HRE). Vegfa is indispensable for HSC survival, mediated by a cell-intrinsic, autocrine mechanism. We hypothesized that a hypoxic HSC microenvironment is required for maintenance or up-regulation of Vegfa expression in HSCs and therefore crucial for HSC survival. We have tested this hypothesis in the mouse model Vegfa(δ/δ), where the HRE in the Vegfa promoter is mutated, preventing HIF binding. Vegfa expression was reduced in highly purified HSCs from Vegfa(δ/δ) mice, showing that HSCs reside in hypoxic areas. Loss of hypoxia-regulated Vegfa expression increases the numbers of phenotypically defined hematopoietic stem and progenitor cells. However, HSC function was clearly impaired when assessed in competitive transplantation assays. Our data provide further evidence that HSCs reside in a hypoxic microenvironment and demonstrate a novel way in which the hypoxic niche affects HSC fate, via the hypoxia-VEGFA axis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Oxigênio/metabolismo , Nicho de Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Hipóxia Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Expressão Gênica , Genótipo , Lâmina de Crescimento/irrigação sanguínea , Lâmina de Crescimento/crescimento & desenvolvimento , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Hexoquinase/genética , Hexoquinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/citologia , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicho de Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Int J Hematol ; 91(4): 557-68, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20422469

RESUMO

The CEBPA gene encodes a transcription factor protein that is crucial for granulocytic differentiation, regulation of myeloid gene expression and growth arrest. Mutations in one or both alleles of CEBPA are observed in about 10% of patients with acute myeloid leukemia (AML). Moreover, other genetic events associated with AML have been identified to deregulate C/EBPalpha expression and function at various levels. Recently developed mouse models that accurately mimic the genetic C/EBPalpha alterations in human AML demonstrate C/EBPalpha's gatekeeper function in the control of self-renewal and lineage commitment of hematopoietic stem cells (HSCs). Moreover, these studies indicate that CEBPA mutations affect HSCs in early leukemia development by inducing proliferation and limiting their lineage potential. However, the exact relationship between 'pre-leukemic' HCSs and those cells that finally initiate leukemia (leukemia-initiating cells) with disturbed differentiation and aberrant proliferation remains elusive. More research is needed to identify and characterize these functionally distinct populations and the exact role of the different genetic alterations in the process of leukemia initiation and maintenance.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Animais , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos
16.
Biofactors ; 24(1-4): 255-61, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16403986

RESUMO

INTRODUCTION: Copper overload due to a defect in the ATPase 7B mediated copper excretion within hepatocytes produces the phenotype of Wilson disease. The overload of hepatocytes with copper results in necrotic liver cells and is accompanied by a high concentration of blood copper levels. That occurs to be the reason for increasing neurological copper concentration. Although copper is linked to oxidation, there are no data on the direct copper related effects in human brain cells. AIM: To test the copper induced changes in protein oxidation in human astrocyte like cells. METHODS: We used U87 cells as model for human astrocytes. Cells were treated with increasing concentrations of copper(II)-chloride in Dulbeccos minimal essential medium. Subsequently, at different time points we investigated: cellular growth, cellular survival under copper treatment, the concentration of oxidized tryptophane in GADPH in vitro as well as the carbonyl concentration and the concentration of oxidized proteins in vivo in U87 glial cells. RESULTS: The viability of cells decreased with both increasing copper concentration and duration of treatment. The concentration of oxidized proteins was directly correlated to the increase of copper concentration and duration of exposure. CONCLUSION: These observations demonstrate the similarities between copper treatment and treatment with other commonly used oxidants, including hydrogen peroxide. Furthermore, the vulnerability of astrocytes towards copper exposure could be demonstrated. Therefore, these data give further insights into understanding of copper metabolism, which in turn is important to reveal the exact pathological mechanism in copper related diseases such as Wilson disease.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cobre/toxicidade , Proteínas/metabolismo , Astrocitoma , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/administração & dosagem , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Oxirredução , Carbonilação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...