Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 29(11): 103457, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36267912

RESUMO

The drug-resistant bacterial strains' emergence increases day by day. This may be a result of biofilm presence, which protects bacteria from antimicrobial agents. Thus, new approaches must be used to control biofilm-related infections in healthcare settings. In such a study, biological silver nanoparticles were introduced in such a study as an anti-biofilm agent against multidrug-resistant E. coli U12 on urinary catheters. Seven different silver nanoparticles concentrations were tested for their antimicrobial activities. Also, anti-biofilm activities against E. coli U12 were tested. Using the dilution method, the silver nanoparticles concentration of 85 µg/ml was the MIC (Minimum Inhibitory Concentration) that had excellent biocompatibility and showed significant antibacterial activity against E. coli U12. Scanning electron microscopy (SEM) confirmed that the highest efficient dose of silver nanoparticles was 340 µg/ml at 144 h that reduced adhesion of E. coli U12 to the urinary catheter. E. coli U12 cells ruptured cell walls and cell membranes after being examined using transmission electron microscopy (TEM). Thus, biologically prepared silver nanoparticles could be used to coat medical devices since it is effective and promising to inhibit biofilm formation by impregnating urinary catheters with silver nanoparticles.

2.
Saudi J Biol Sci ; 29(4): 2989-2997, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531251

RESUMO

Uropathogens develop biofilms on urinary catheters, resulting in persistent and chronic infections that are associated with resistance to antimicrobial therapy. Therefore, the current study was performed to control biofilm-associated urinary tract infections through assaying the anti-biofilm ability of lactic acid bacteria (LAB) against multidrug-resistant (MDR) uropathogens. Twenty LAB were obtained from pickles and fermented dairy products, and screened for their anti-biofilm and antimicrobial effects against MDR Escherichia coli U12 (ECU12). Lactobacillus plantarum Y3 (LPY3) (MT498405), showed the highest inhibitory effect and biofilm production. Pre-coating of a microtitre plate with LPY3 culture was more potent than co-incubation. Pre-coating with LPY3 culture generated a higher anti-biofilm effect with an adherence of 14.5% than cell free supernatant (CFS) (31.2%). Anti-biofilm effect of CFS was heat stable up to 100 °C with higher effect at pH 4-6. Pre-coating urinary catheter with LPY3 culture reduced the CFU/cm2 of ECU12 attached to the catheter for up to seven days. Meanwhile, CFS reduced the ECU12 CFU/cm2 for up to four days. Scanning electron microscope confirmed the reduction of ECU12 adherence to catheters after treatment with CFS. Therefore, Lactobacillus plantarum can be applied in medical devices as prophylactic agent and as a natural biointervention to treat urinary tract infections.

3.
Food Sci Biotechnol ; 28(3): 841-850, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31093442

RESUMO

This study aimed to assess the biofilm formation by Bacillus cereus on two novel surfaces namely: aluminum and cold steel in comparison study with stainless steel and polystyrene. Also, it aimed to study the inhibitory effect of a new strain Pediococcus acidilactici against biofilm formation by B. cereus grown on these surfaces. In this study, B. cereus M50 isolated from milky machine surface was selected as the highest biofilm producer. The number of M50 cells adhered to aluminum and stainless steel surfaces were more than that adhered to polystyrene and cold steel, respectively. The antimicrobial, anti-adhesive and SEM studies revealed that the P. acidilactici P12 culture and its cell free filtrate showed a significant potential inhibition of biofilm formation of M50 on all tested surfaces under different conditions. These results demonstrated that P. acidilactici strain are considered a new biotreatment for biofilm destruction of food borne pathogens, food biopreservation and food safety.

4.
J Biol Phys ; 43(2): 211-224, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28474135

RESUMO

The influence of N2 plasma on the antibacterial properties of polystyrene/fullerene (C60/PS) nanocomposite films with two concentrations is investigated. A comparison is made between the surface characteristics of the films before and after plasma irradiation for different time intervals. The alterations induced on the surface of the films after treatment are analyzed by contact angle and surface energy measurements, FTIR spectroscopy, and atomic force microscopy. The antibacterial properties, growth, biofilm formation, and adhesion of the nanocomposite films against two multidrug-resistant bacterial strains, Staphylococcus aureus KT337489 and Pseudomonas aeruginosa KT337488, are investigated before and after plasma irradiation. The results indicate that P. aeruginosa is more sensitive to treatment than S. aureus as well as an enhancement of the anti-adhesion of both strains to treated surfaces through exposure.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Fulerenos/química , Nanocompostos/química , Nitrogênio/química , Gases em Plasma/química , Poliestirenos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
5.
Braz J Microbiol ; 46(4): 957-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691453

RESUMO

L-glutaminase was produced by Streptomyces canarius FR (KC460654) with an apparent molecular mass of 44 kDa. It has 17.9 purification fold with a final specific activity 132.2 U/mg proteins and 28% yield recovery. The purified L-glutaminase showed a maximal activity against L-glutamine when incubated at pH 8.0 at 40 °C for 30 min. It maintained its stability at wide range of pH from 5.0 11.0 and thermal stable up to 60 °C with Tm value 57.5 °C. It has high affinity and catalytic activity for L-glutamine (Km 0.129 mM, Vmax 2.02 U/mg/min), followed by L-asparagine and L-aspartic acid. In vivo, L-glutaminase showed no observed changes in liver; kidney functions; hematological parameters and slight effect on RBCs and level of platelets after 10 days of rabbit's injection. The anticancer activity of L-glutaminase was also tested against five types of human cancer cell lines using MTT assay in vitro. L-glutaminase has a significant efficiency against Hep-G2 cell (IC50, 6.8 µg/mL) and HeLa cells (IC50, 8.3 µg/mL), while the growth of MCF-7 cells was not affected. L-glutaminase has a moderate cytotoxic effect against HCT-116 cell (IC50, 64.7 µg/mL) and RAW 264.7 cell (IC50, 59.3 µg/mL).


Assuntos
Antineoplásicos/química , Glutaminase/química , Streptomyces/enzimologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Biocatálise , Proliferação de Células/efeitos dos fármacos , Estabilidade Enzimática , Glutaminase/metabolismo , Glutaminase/farmacologia , Glutamina/química , Glutamina/metabolismo , Células HeLa , Células Hep G2 , Humanos , Cinética , Streptomyces/química , Especificidade por Substrato
6.
Braz. j. microbiol ; 46(4): 957-968, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-769664

RESUMO

Abstract L-glutaminase was produced by Streptomyces canarius FR (KC460654) with an apparent molecular mass of 44 kDa. It has 17.9 purification fold with a final specific activity 132.2 U/mg proteins and 28% yield recovery. The purified L-glutaminase showed a maximal activity against L-glutamine when incubated at pH 8.0 at 40 °C for 30 min. It maintained its stability at wide range of pH from 5.0 11.0 and thermal stable up to 60 °C with Tm value 57.5 °C. It has high affinity and catalytic activity for L-glutamine (Km 0.129 mM, Vmax 2.02 U/mg/min), followed by L-asparagine and L-aspartic acid. In vivo, L-glutaminase showed no observed changes in liver; kidney functions; hematological parameters and slight effect on RBCs and level of platelets after 10 days of rabbit's injection. The anticancer activity of L-glutaminase was also tested against five types of human cancer cell lines using MTT assay in vitro. L-glutaminase has a significant efficiency against Hep-G2 cell (IC50, 6.8 μg/mL) and HeLa cells (IC50, 8.3 μg/mL), while the growth of MCF-7 cells was not affected. L-glutaminase has a moderate cytotoxic effect against HCT-116 cell (IC50, 64.7 μg/mL) and RAW 264.7 cell (IC50, 59.3 μg/mL).


Assuntos
Animais/química , Animais/efeitos dos fármacos , Animais/enzimologia , Animais/metabolismo , Animais/farmacologia , Antineoplásicos/química , Antineoplásicos/efeitos dos fármacos , Antineoplásicos/enzimologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Biocatálise/química , Biocatálise/efeitos dos fármacos , Biocatálise/enzimologia , Biocatálise/metabolismo , Biocatálise/farmacologia , Proliferação de Células/química , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/enzimologia , Proliferação de Células/metabolismo , Proliferação de Células/farmacologia , Estabilidade Enzimática/química , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/enzimologia , Estabilidade Enzimática/metabolismo , Estabilidade Enzimática/farmacologia , Glutaminase/química , Glutaminase/efeitos dos fármacos , Glutaminase/enzimologia , Glutaminase/metabolismo , Glutaminase/farmacologia , Glutamina/química , Glutamina/efeitos dos fármacos , Glutamina/enzimologia , Glutamina/metabolismo , Glutamina/farmacologia , Células HeLa/química , Células HeLa/efeitos dos fármacos , Células HeLa/enzimologia , Células HeLa/metabolismo , Células HeLa/farmacologia , /química , /efeitos dos fármacos , /enzimologia , /metabolismo , /farmacologia , Humanos/química , Humanos/efeitos dos fármacos , Humanos/enzimologia , Humanos/metabolismo , Humanos/farmacologia , Cinética/química , Cinética/efeitos dos fármacos , Cinética/enzimologia , Cinética/metabolismo , Cinética/farmacologia , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/enzimologia , Streptomyces/metabolismo , Streptomyces/farmacologia , Especificidade por Substrato/química , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/enzimologia , Especificidade por Substrato/metabolismo , Especificidade por Substrato/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...