Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Eur J Pharmacol ; 976: 176694, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821162

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative condition affecting a substantial portion of the global population. It is marked by a complex interplay of factors, including the accumulation of amyloid plaques and tau tangles within the brain, leading to neuroinflammation and neuronal damage. Recent studies have underscored the role of free lipids and their derivatives in the initiation and progression of AD. Eicosanoids, metabolites of polyunsaturated fatty acids like arachidonic acid (AA), emerge as key players in this scenario. Remarkably, eicosanoids can either promote or inhibit the development of AD, and this multifaceted role is determined by how eicosanoid signaling influences the immune responses within the brain. However, the precise molecular mechanisms dictating the dual role of eicosanoids in AD remain elusive. In this comprehensive review, we explore the intricate involvement of eicosanoids in neuronal function and dysfunction. Furthermore, we assess the therapeutic potential of targeting eicosanoid signaling pathways as a viable strategy for mitigating or halting the progression of AD.

2.
ACS Pharmacol Transl Sci ; 7(5): 1270-1277, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751614

RESUMO

Inflammatory bowel diseases (IBD), an inflammatory disease, include Crohn's disease and ulcerative colitis. Dysregulated autoimmune response to gut dysbiosis is mainly involved in the pathogenesis of IBD and is triggered by various inciting environmental factors. With its rising prevalence in every continent, IBD has evolved into a global disease, which is on the rise, affecting people of all ages. There is a growing incidence of IBD in the elderly population, as evidenced by epidemiological data. IBD is characterized by an inflammatory process that requires a lifelong treatment. The main challenge in IBD management is the adverse side effects associated with almost all of the currently available drugs. Hence, there is a search for drugs with more efficacy and fewer side effects. Natural products with great structural diversity and ease of modification chemically are being explored, as they were shown to control IBD by safely suppressing pro-inflammatory pathways. The present study aims at understanding the role of mangiferin, a COX-2 inhibitor isolated from tubers of Pueraria tuberosa in the treatment of IBD and colon cancer, in vitro on the Caco-2 human colon cancer cell line and in vivo in the acetic acid-induced IBD mouse model. In the acetic acid-induced colitis model, it prevented the decrease in length of the colon, mucosal erosion, and cellular infiltration in a dose-dependent manner. The expression levels of various pro-inflammatory markers like COX-2, IL1ß, TNF-α, INF-γ, IL-6, NLRP3, and caspase-1 were downregulated in an acetic acid-induced mouse model on treatment with mangiferin in a dose dependent manner. Mangiferin also showed anticancer effects on Caco-2 cells by increasing the expression of Fas ligand, Fas receptor, FADD, caspase-8, and caspase-3 proteins, whereas Bid and Bcl-2 proteins showed decreased expression. These data suggest that mangiferin, an inhibitor of COX, induces apoptosis in colon cancer cells in vitro and protects mice from acetic acid-induced colitis in vivo.

3.
Bioorg Chem ; 138: 106606, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210826

RESUMO

The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 µM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 µM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.


Assuntos
Quinolinas , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Pele/metabolismo , Quinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular
4.
Cancers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077715

RESUMO

The present study employed nanoparticle tracking analysis, transmission electron microscopy, immunoblotting, RNA sequencing, and quantitative real-time PCR validation to characterize serum-derived small extracellular vesicles (sEVs) from RB patients and age-matched controls. Bioinformatics methods were used to analyze functions, and regulatory interactions between coding and non-coding (nc) sEVs RNAs. The results revealed that the isolated sEVs are round-shaped with a size < 150 nm, 5.3 × 1011 ± 8.1 particles/mL, and zeta potential of 11.1 to −15.8 mV, and expressed exosome markers CD9, CD81, and TSG101. A total of 6514 differentially expressed (DE) mRNAs, 123 DE miRNAs, and 3634 DE lncRNAs were detected. Both miRNA-mRNA and lncRNA-miRNA-mRNA network analysis revealed that the cell cycle-specific genes including CDKNI1A, CCND1, c-MYC, and HIF1A are regulated by hub ncRNAs MALAT1, AFAP1-AS1, miR145, 101, and 16-5p. Protein-protein interaction network analysis showed that eye-related DE mRNAs are involved in rod cell differentiation, cone cell development, and retinol metabolism. In conclusion, our study provides a comprehensive overview of the RB sEV RNAs and regulatory interactions between them.

5.
J Inflamm Res ; 15: 4349-4358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937919

RESUMO

Severe Corona Virus Disease is characterized by angiocentric inflammation of lungs and cytokine storm leading to potentially fatal multiple organ failure. Several studies have shown the high levels of pro-inflammatory cytokines, indicative of a poor prognosis in COVID-19. Eicosanoids play an important role in the induction of inflammation and cytokine production, while anti-inflammatory and pro-resolving properties of some eicosanoic acid derivatives enable inflamed tissues to return to homeostasis through the resolution of inflammation by aiding the clearance of cell debris and downregulation of pro-inflammatory stimulants. This review attempts to provide an overall insight on the eicosanoids synthesis and their role in the resolution of inflammation in the context of Corona Virus infection.

6.
J Nanobiotechnology ; 20(1): 317, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794557

RESUMO

BACKGROUND: Exosomes are nano-sized vesicles secreted by various cells into the intra and extracellular space and hence is an integral part of biological fluids including milk. In the last few decades, many research groups have proved the potential of milk exosomes as a sustainable, economical and non-immunogenic drug delivery and therapeutic agent against different pathological conditions. However, its anti-viral properties still remain to be unearthed. METHODS: Here, we have been able to isolate, purify and characterize the milk derived exosomes from Cow (CME) and Goat (GME) and further studied its antiviral properties against Dengue virus (DENV), Newcastle Disease Virus strain Komarov (NDV-K) and Human Immunodeficiency Virus (HIV-1) using an in-vitro infection system. RESULTS: TEM, NTA and DLS analysis validated the appropriate size of the isolated cow and goat milk exosomes (30-150 nm). Real-time PCR and immunoblotting results confirmed the presence of several milk exosomal miRNAs and protein markers. Our findings suggest that GME significantly decreased the infectivity of DENV. In addition, we confirmed that GME significantly reduces DENV replication and reduced the secretion of mature virions. Furthermore, heat inactivation of GME did not show any inhibition on DENV infection, replication, and secretion of mature virions. RNase treatment of GME abrogates the anti-viral properties indicating direct role of exosomes in DENV inhibition. In addition GME inhibited the infectivity of NDV-K, but not HIV-1, suggesting that the GME mediated antiviral activity might be virus specific. CONCLUSION: This study demonstrates the anti-viral properties of milk exosomes and opens new avenues for the development of exosome-based therapies to treat viral diseases.


Assuntos
Vírus da Dengue , Exossomos , Animais , Antivirais/farmacologia , Bovinos , Exossomos/metabolismo , Feminino , Leite , Vírus da Doença de Newcastle
7.
Mol Pharm ; 19(3): 763-774, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195427

RESUMO

Quite recently, milk exosomes have been recognized as efficient drug delivery systems owing to their biocompatibility and easy availability for scale-up technologies. However, there are no reports of comparative studies with regards to drug delivery by milk exosomes derived from different species. In this study, we isolated and characterized milk exosomes of cow, buffalo, and goat by various techniques and tried to understand their drug loading capacity and functional efficiency in HepG2, HCT116, and A549 cells by using doxorubicin. Doxorubicin was loaded to milk exosomes by three methods, that is, incubation, saponin treatment, and sonication. The isolated exosomes were found to be spherical with a size of <200 nm and displayed specific markers, namely, CD81, HSP70, HSC70, and miRNAs. Drug loading studies revealed that goat milk exosomes had the highest loading capacity across all three methods. Doxorubicin-encapsulated goat milk exosomes resulted in the inhibition of cell viability, with low IC50 values in HepG2, HCT-116, and A549 cells. Doxorubicin-encapsulated goat exosomes displayed better IC50 values than cow and buffalo milk-derived counterparts. In line with this, the ability of doxorubicin-encapsulated goat milk exosomes to induce apoptosis in HepG2 and HCT-116 cells was higher than that of cow and buffalo milk exosomes and free doxorubicin. Furthermore, unbound goat milk exosomes significantly reduced cell viability as compared to cow and buffalo milk exosomes. The transepithelial transport assay shows that doxorubicin-loaded milk exosomes transport doxorubicin efficiently as compared to free doxorubicin in vitro. Doxorubicin released from milk exosomes shows a biphasic release pattern, burst release followed by sustained release. These observations are important in light of the emerging importance of milk-derived exosomes as drug carriers to treat cancers.


Assuntos
Exossomos , Animais , Búfalos , Bovinos , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Feminino , Cabras , Leite/metabolismo
8.
Metabolites ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34677413

RESUMO

Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5-/- mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5-/- animals tested previously in similar experimental setups.

9.
J Inflamm Res ; 14: 253-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33568930

RESUMO

Inflammation is a protective response that develops against tissue injury and infection. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric side-effects but are associated with cardiac side-effects on long-term use. The search for anti-inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better choice for the development of next generation anti-inflammatory drugs. In this direction the options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an important role in the mediation of inflammation, efforts are also being made to target both COX and LOX pathways. This review focuses on addressing the following three points: 1) How NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets being explored for the discovery and development of anti-inflammatory drugs without side-effects.

10.
Mini Rev Med Chem ; 20(12): 1179-1187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32459606

RESUMO

BACKGROUND: The accurate ranking of analogs of lead molecules with respect to their estimated binding free energies to drug targets remains highly challenging in molecular docking due to small relative differences in their free energy values. METHODS: Free energy perturbation (FEP) method, which provides the most accurate relative binding free energy values were earlier used to calculate free energies of many ligands for several important drug targets including Fructose-1,6-BisphosPhatase (FBPase). The availability of abundant structural and experimental binding affinity data for FBPase inhibitors provided an ideal system to evaluate four widely used docking programs, AutoDock, Glide, GOLD and SurflexDock, distinct from earlier comparative evaluation studies. RESULTS: The analyses suggested that, considering various parameters such as docking pose, scoring and ranking accuracy, sensitivity analysis and newly introduced relative ranking score, Glide provided reasonably consistent results in all respects for the system studied in the present work. Whereas GOLD and AutoDock also demonstrated better performance, AutoDock results were found to be significantly superior in terms of scoring accuracy compared to the rest. CONCLUSION: Present analysis serves as a useful guide for researchers working in the field of lead optimization and for developers in upgradation of the docking programs.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Frutose-Bifosfatase/química , Simulação de Acoplamento Molecular , Software , Monofosfato de Adenosina/metabolismo , Sítios de Ligação , Desenho de Fármacos , Frutose-Bifosfatase/metabolismo , Ligantes , Ligação Proteica , Termodinâmica
11.
RSC Adv ; 10(55): 33534-33543, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515074

RESUMO

The discovery and development of novel antiviral drugs from natural sources is continuously increasing due to limitations of currently available drugs such as toxic side effects, drug residue risk factors, high costs, and poor therapeutic strategies. Also, there are very few known antiviral drugs that are effective against only specific viruses. Hence, the present study is intended to isolate and characterize potent antiviral compounds from the methanolic root extract of Sophora interrupta Bedd. against avian paramyxovirus, Newcastle disease virus (NDV) and to distinguish the molecular basis of antiviral compounds. The two isolated flavonoids, maackiain (SR-1) and echinoisoflavanone (SR-2) exhibited the best antiviral activities against NDV infection in chicken embryo fibroblast cell lines compared to the standard antiviral drug, Ribavirin. Further, the in vitro studies and quantitative PCR analysis suggests that these flavonoids inhibit the viral entry, replication, and transcription, which may be beneficial as a promising strategy for the treatment of viral infections. Besides, the molecular docking studies of SR-1 and SR-2 exhibited high binding affinities of -7.6 and -8.0 kcal mol-1, respectively, and marked interactions with the NDV surface glycoprotein, hemagglutinin neuraminidase (HN). Also, the in silico toxicity properties as well pharmacokinetic studies of isolates revealed them as pharmacologically potent antiviral compounds.

12.
Antioxid Redox Signal ; 32(1): 1-17, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642348

RESUMO

Aims: Most mammalian genomes involve several genes encoding for functionally distinct arachidonate lipoxygenase (ALOX isoforms). Proinflammatory leukotrienes are formed via the ALOX5 pathway, but 12/15-lipoxygenating ALOX isoforms have been implicated in the biosynthesis of pro-resolving mediators. In vitro mutagenesis of the triad determinants abolished the leukotriene synthesizing activity of ALOX5, but the biological consequences of these alterations have not been studied. To fill this gap, we created Alox5 knock-in mice, which express the 12/15-lipoxygenating Phe359Trp + Ala424Ile + Asn425Met Alox5 triple mutant and characterized its phenotypic alterations. Results: The mouse Alox5 triple mutant functions as arachidonic acid 15-lipoxygenating enzyme, which also forms 12S-hydroxy and 8S-hydroxy arachidonic acid. In contrast to the wild-type enzyme, the triple mutant effectively oxygenates linoleic acid to 13S-hydroxy linoleic acid (13S-HODE), which functions as activating ligand of the type-2 nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). Knock-in mice expressing the mutant enzyme are viable, fertile, and develop normally. The mice cannot synthesize proinflammatory leukotrienes but show significantly attenuated plasma levels of lipolytic endocannabinoids. When aging, the animals gained significantly more body weight, which may be related to the fivefold higher levels of 13-HODE in the adipose tissue. Innovation: These data indicate for the first time that in vivo mutagenesis of the triad determinants of mouse Alox5 abolished the biosynthetic capacity of the enzyme for proinflammatory leukotrienes and altered the catalytic properties of the protein favoring the formation of 13-HODE. Conclusion:In vivo triple mutation of the mouse Alox5 gene impacts the body weight homeostasis of aging mice via augmented formation of the activating PPARγ ligand 13-HODE.


Assuntos
Envelhecimento/genética , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Mutação , Envelhecimento/metabolismo , Alanina/genética , Animais , Asparagina/genética , Peso Corporal , Feminino , Técnicas de Introdução de Genes , Leucotrienos/metabolismo , Ácido Linoleico/metabolismo , Masculino , Camundongos , PPAR gama , Fenilalanina/genética
13.
Curr Drug Metab ; 20(12): 967-976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31775595

RESUMO

BACKGROUND: Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treatment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yielding pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, antiinflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mechanism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. OBJECTIVES: The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against various human diseases including cancer and inflammation. CONCLUSION: The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of C-PC and may contribute significant benefits to global public health.


Assuntos
Ficocianina/uso terapêutico , Antineoplásicos/farmacologia , Cianobactérias , Humanos , Ficobilissomas , Ficocianina/biossíntese , Ficocianina/química
14.
Eur J Pharm Biopharm ; 142: 1-7, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176725

RESUMO

Recent studies using 3D scaffolds have emphasized the importance of the surrounding stroma on chemoresistance in drug efficacy screenings. Since 15-lipoxygenase (15-LOX) metabolites reduced growth of breast, colon, prostate, lung and leukemia cancer cells in 2D cell culture, we were intrigued by the direct comparison of 15-LOX metabolite efficacy in 2D and 3D culture including a stroma equivalent. Herein, we studied the effects of 15-LOX metabolites 13-HpOTrE, 13-HpODE, and 15-HpETE on cutaneous squamous cell carcinoma cells. All metabolites reduced the viability of cancer cells in 2D culture below 10% at 100 µM of each substance. 13-HpOTrE, being the most active agent with respect to cytotoxicity and apoptosis was selected for further experiments. Other than with the 2D culture, we did not obverse cell death, neither from lactate dehydrogenase release, nor from morphology when applying 13-HpOTrE onto the surface of the 3D tumor constructs for one week. Next, we investigated the protein expression of peroxisome proliferator activated receptor gamma, for which the ligand is 13-HpOTrE, and Bcl-2 protein, an apoptosis regulator, but did not find any change following 13-HpOTrE administration. However, 13-HpOTrE treatment reduced the release of interleukin-6, bringing it closer to the level of tumor-free constructs. In conclusion, 13-HpOTrE reduces viability of skin cancer cells in 2D cultures only but modulates inflammatory cytokine levels in the corresponding 3D tumor constructs, too. These studies highlight the need for screening of anticancer drugs employing 3D tumors and including tumor microenvironment in the screening process to increase the low success rate of clinical trials in oncology.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/metabolismo , Leucotrienos/metabolismo , Ácidos Linoleicos/metabolismo , Peróxidos Lipídicos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
15.
Semin Cancer Biol ; 56: 116-127, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29104026

RESUMO

Lipid signaling network was proposed as a potential target for cancer prevention and treatment. Several recent studies revealed that phospholipid metabolising enzyme, phospholipase A2 (PLA2), is a critical regulator of cancer accelerating pathologies and apoptosis in several types of cancers. In addition to functioning as an enzyme, PLA2 can activate a phospholipase A2 receptor (PLA2R1) in plasma membrane. While the list of PLA2 targets extends to glucose homeostasis, intracellular energy balance, adipocyte development, and hepatic lipogenesis, the PLA2R1 downstream effectors are few and scarcely investigated. Among the most addressed PLA2R1 effects are regulation of pro-inflammatory signaling, autoimmunity, apoptosis, and senescence. Localized in glomeruli podocytes, the receptor can be identified by circulating anti-PLA2R1 autoantibodies leading to development of membranous nephropathy, a strong autoimmune inflammatory cascade. PLA2R1 was shown to induce activation of Janus-kinase 2 (JAK2) and estrogen-related receptor α (ERRα)-controlled mitochondrial proteins, as well as increasing the accumulation of reactive oxygen species, thus leading to apoptosis and senescence. These findings indicate the potential role of PLA2R1 as tumor suppressor. Epigenetic investigations addressed the role of DNA methylation, histone modifications, and specific microRNAs in the regulation of PLA2R1 expression. However, involvement of PLA2R1 in suppression of malignant growth and metastasis remains controversial. In this review, we summarize the recent findings that highlight the role of PLA2R1 in the regulation of carcinogenesis-related intracellular signaling.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Receptores da Fosfolipase A2/genética , Receptores da Fosfolipase A2/metabolismo , Animais , Apoptose , Biomarcadores , Suscetibilidade a Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Neoplasias/patologia , Especificidade de Órgãos , Fosfolipases A2/metabolismo , Ligação Proteica , Transdução de Sinais
16.
Fitoterapia ; 131: 189-199, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30339925

RESUMO

Premna integrifolia (Agnimantha brihat) is a traditional medicinal plant with a prominent place in Ayurveda, Siddha and Unani systems of medicine. In this study we have evaluated the anti-inflammatory and immunomodulatory properties of the Premna integrifolia root extracts employing cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-LOX) enzyme-based assays, lymphocyte proliferation assay, pro-and anti-inflammatory cytokines measurement. Petroleum ether extract (PEE) of Premna integrifolia showed potent inhibition of COX-2 and 5-LOX with IC50 values of 6.15 µg/mL and 11.33 µg/mL respectively. In in vitro studies on RAW 264.7 cell line, PEE showed inhibition in the formation of nitric oxide (NO), pro-inflammatory cytokines (IL-1ß, IL-6), prostaglandin E2 (PGE2) production, induction of anti-inflammatory cytokine (IL-2) and down-regulation of expression of COX-2, 5-LOX, TNF-α, IL-1ß and iNOS. PEE also significantly reduced carrageenan-induced paw edema in mouse model of inflammation. Further, attempts in isolating the active principle(s) involved in these anti-inflammatory effects of PEE by separation on RP-HPLC resulted in the isolation of four active peaks, H1, H2, H3 and H5, inhibiting COX-1, COX-2 and 5-LOX, out of which H3 was identified as 6- hydroxy salvinolone (6-HS). Present findings reveal that PEE of roots of Premna integrifolia exhibits potent anti-inflammatory and immunomodulatory activities, which could form a potential source for development of anti-inflammatory drugs. 6-HS, a COX-2/5-LOX dual inhibitor along with other lead molecules isolated from PEE of Premna integrifolia may form lead molecules for the development of COX-LOX dual inhibitors.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Lamiaceae/química , Inibidores de Lipoxigenase/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Carragenina , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Citocinas/metabolismo , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Índia , Inibidores de Lipoxigenase/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Plantas Medicinais/química , Células RAW 264.7 , Ovinos
17.
Oxid Med Cell Longev ; 2018: 3090517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046374

RESUMO

Increased risk of cardiovascular side effects has been reported with many of the drugs in the market, including nonsteroidal anti-inflammatory drugs (NSAIDs). Hence, it is critical to thoroughly evaluate the biodistribution and pharmacokinetic properties of the drugs. Presently nanotechnology in combination with noninvasive imaging techniques such as magnetic resonance imaging (MRI), computed axial tomography (CAT), and positron emission tomography (PET) provides a better estimate of the spatio-temporal distribution of therapeutic molecules. Optical imaging using quantum dot- (QD-) tagged biological macromolecules is emerging as a fast, economical, sensitive, and safer alternative for theranostic purposes. In the present study, we report the nanoconjugates of mercaptopropionic acid- (MPA-) capped CdTe quantum dots (QDs) and Celecoxib for bio-imaging in carrageenan-induced mouse paw edema model of inflammation. QD-Celecoxib conjugates were characterized by fluorescence, FT-IR, NMR, and zeta-potential studies. In vivo imaging of QD-Celecoxib conjugates showed clear localization in the inflamed tissue of mouse paw within 3 h, with a gradual increase reaching a maximum and a later decline. This decrease of fluorescence in the paw region is followed by an increase in urinary bladder region, suggesting the possible excretion of QD-drug conjugates from mice within 24 h.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Celecoxib/química , Edema/tratamento farmacológico , Pontos Quânticos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Espectroscopia de Ressonância Magnética , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Ayurveda Integr Med ; 9(2): 90-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29239790

RESUMO

BACKGROUND: Aegle marmelos (Bilva) is being used in Ayurveda for the treatment of several inflammatory disorders. The plant is a member of a fixed dose combination of Dashamoola in Ayurveda. However, the usage of roots/root bark or stems is associated with sustainability concerns. OBJECTIVES: The present study is aimed to compare the anti-inflammatory properties of different extracts of young roots (year wise) and mature parts of Bilva plants collected from different geographical locations in India, so as to identify a sustainable source for Ayurvedic formulation. MATERIALS AND METHODS: A total of 191 extracts (petroleum ether, ethyl acetate, ethanol and aqueous) of roots, stems and leaves of A. marmelos (collected from Gujarat, Maharashtra, Odisha, Chhattisgarh, Karnataka and Andhra Pradesh region) were tested for anti-inflammatory effects in vitro on isolated target enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), lymphocyte proliferation assay (LPA), cytokine profiling in LPS induced mouse macrophage (RAW 264.7) cell line and in vivo carrageenan induced paw edema in mice. RESULTS: Of 191 extracts, 44 extracts showed COX-2 inhibition and 38 extracts showed COX-1 inhibition, while none showed 5-LOX inhibition. Cytokine analysis of the 44 extracts showing inhibition of COX-2 suggested that only 17 extracts modulated the cytokines by increasing the anti-inflammatory cytokine IL-2 and reducing the pro-inflammatory cytokines like IL-1ß, MIP1-α and IL-6. The young (2 and 3 years) roots of Bilva plants from Gujarat and young (1 yr) roots from Odisha showed the most potent anti-inflammatory activity by suppressing the pro-inflammatory cytokines and inducing anti-inflammatory cytokines. These three extracts have also shown in vivo anti-inflammatory activity comparable to that in adult stem and root barks. CONCLUSION: The present study reveals that young roots of Bilva plants from Gujarat and Odisha region could form a sustainable source for use in Ayurvedic formulations with anti-inflammatory activities. The present study also indicates that the region in which the plants are grown and the age of the plants play an important role in exhibiting the anti-inflammatory effect.

19.
Sci Rep ; 6: 31649, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535180

RESUMO

The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inflamassomos/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Choque Séptico/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologia , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Choque Séptico/patologia , Ácido alfa-Linolênico/metabolismo
20.
Semin Cancer Biol ; 40-41: 48-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26853158

RESUMO

Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Anticarcinógenos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Ácido Araquidônico/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...