Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cancer Res Commun ; 3(6): 969-979, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377612

RESUMO

Ribosomes in cancer cells accumulate numerous patient-specific structural and functional modifications that facilitate tumor progression by modifying protein translation. We have taken a unique synthetic chemistry approach to generate novel macrolides, Ribosome modulating agents (RMA), that are proposed to act distal to catalytic sites and exploit cancer ribosome heterogeneity. The RMA ZKN-157 shows two levels of selectivity: (i) selective translation inhibition of a subset of proteins enriched for components of the ribosome and protein translation machinery that are upregulated by MYC; and (ii) selective inhibition of proliferation of a subset of colorectal cancer cell lines. Mechanistically, the selective ribosome targeting in sensitive cells triggered cell-cycle arrest and apoptosis. Consequently, in colorectal cancer, sensitivity to ZKN-157 in cell lines and patient-derived organoids was restricted to the consensus molecular subtype 2 (CMS2) subtype that is distinguished by high MYC and WNT pathway activity. ZKN-157 showed efficacy as single agent and, the potency and efficacy of ZKN-157 synergized with clinically approved DNA-intercalating agents which have previously been shown to inhibit ribogenesis as well. ZKN-157 thus represents a new class of ribosome modulators that display cancer selectivity through specific ribosome inhibition in the CMS2 subtype of colorectal cancer potentially targeting MYC-driven addiction to high protein translation. Significance: This study demonstrates that ribosome heterogeneity in cancer can be exploited to develop selective ribogenesis inhibitors. The colorectal cancer CMS2 subtype, with a high unmet need for therapeutics, shows vulnerability to our novel selective ribosome modulator. The mechanism suggests that other cancer subtypes with high MYC activation could also be targeted.


Assuntos
Neoplasias Colorretais , Biossíntese de Proteínas , Ribossomos , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ribossomos/genética , Ribossomos/metabolismo , Pontos de Checagem do Ciclo Celular
2.
Oncologist ; 28(2): e115-e123, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36427020

RESUMO

BACKGROUND: Ulixertinib is a novel oral ERK inhibitor that has shown promising single-agent activity in a phase I clinical trial that included patients with RAS-mutant cancers. METHODS: We conducted a phase Ib trial combining ulixertinib with gemcitabine and nab-paclitaxel (GnP) for untreated metastatic pancreatic adenocarcinoma. The trial comprised a dose de-escalation part and a cohort expansion part at the recommended phase II dose (RP2D). Primary endpoint was to determine the RP2D of ulixertinib plus GnP and secondary endpoints were to assess toxicity and safety profile, biochemical and radiographic response, progression-free survival (PFS) and overall survival (OS). RESULTS: Eighteen patients were enrolled. Ulixertinib 600 mg PO twice daily (BID) with GnP was initially administered but was de-escalated to 450 mg BID as RP2D early during dose expansion due to poor tolerability, which ultimately led to premature termination of the study. Common treatment-related adverse events (TRAEs) were anemia, thrombocytopenia, rash and diarrhea. For 5 response evaluable patients, one patient achieved a partial response and 2 patients achieved stable disease. For 15 patients who received the triplet, median PFS and OS were 5.46 and 12.23 months, respectively. CONCLUSION: Ulixertinib plus GnP had similar frequency of grade ≥3 TRAEs and potentially efficacy as GnP, however was complicated by a high rate of all-grade TRAEs (ClinicalTrials.gov Identifier: NCT02608229).


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Desoxicitidina , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Paclitaxel , Albuminas/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Resultado do Tratamento
3.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763345

RESUMO

Integrins - the principal extracellular matrix (ECM) receptors of the cell - promote cell adhesion, migration, and proliferation, which are key events for cancer growth and metastasis. To date, most integrin-targeted cancer therapeutics have disrupted integrin-ECM interactions, which are viewed as critical for integrin functions. However, such agents have failed to improve cancer patient outcomes. We show that the highly expressed integrin ß1 subunit is required for lung adenocarcinoma development in a carcinogen-induced mouse model. Likewise, human lung adenocarcinoma cell lines with integrin ß1 deletion failed to form colonies in soft agar and tumors in mice. Mechanistically, we demonstrate that these effects do not require integrin ß1-mediated adhesion to ECM but are dependent on integrin ß1 cytoplasmic tail-mediated activation of focal adhesion kinase (FAK). These studies support a critical role for integrin ß1 in lung tumorigenesis that is mediated through constitutive, ECM binding-independent signaling involving the cytoplasmic tail.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Integrinas , Ligantes , Neoplasias Pulmonares/patologia , Camundongos
4.
Kidney Cancer J ; 6(3): 179-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684483

RESUMO

BACKGROUND: SET domain-containing protein 2 (SETD2) is commonly mutated in renal cell carcinoma. SETD2 methylates histone H3 as well as a growing list of non-histone proteins. OBJECTIVE: Initially, we sought to explore SETD2-dependent changes in lysine methylation of proteins in proximal renal tubule cells. Subsequently, we focused on changes in lysine methylation of the translation elongation factor eEF1A1. METHODS: To accomplish these objectives, we initially performed a systems-wide analysis of protein lysine-methylation and expression in wild type (WT) and SETD2-knock out (KO) kidney cells and later focused our studies on eEF1A1 as well as the expression of lysine methyltransferases that regulate its lysine methylation. RESULTS: We observed decreased lysine methylation of the translation elongation factor eEF1A1. EEF1AKMT2 and EEF1AKMT3 are known to methylate eEF1A1, and we show here that their expression is dependent on SET-domain function of SETD2. Globally, we observe differential expression of hundreds of proteins in WT versus SETD2-KO cells, including increased expression of many involved in protein translation. Finally, we observe decreased progression free survival and loss of EEF1AKMT2 gene expression in SETD2-mutated tumors predicted to have loss of function of the SET domain. CONCLUSION: Overall, these data suggest that SETD2-mutated ccRCC, via loss of enzymatic function of the SET domain, displays dysregulation of protein translation as a potentially important component of the transformed phenotype.

5.
Blood ; 138(26): 2874-2885, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34115118

RESUMO

Donor and recipient cytomegalovirus (CMV) serostatus correlate with transplant-related mortality that is associated with reduced survival following allogeneic stem cell transplant (SCT). Prior epidemiologic studies have suggested that CMV seronegative recipients (R-) receiving a CMV-seropositive graft (D+) experience inferior outcomes compared with other serostatus combinations, an observation that appears independent of viral reactivation. We therefore investigated the hypothesis that prior donor CMV exposure irreversibly modifies immunologic function after SCT. We identified a CD4+/CD57+/CD27- T-cell subset that was differentially expressed between D+ and D- transplants and validated results with 120 patient samples. This T-cell subset represents an average of 2.9% (D-/R-), 18% (D-/R+), 12% (D+/R-), and 19.6% (D+/R+) (P < .0001) of the total CD4+ T-cell compartment and stably persists for at least several years post-SCT. Even in the absence of CMV reactivation post-SCT, D+/R- transplants displayed a significant enrichment of these cells compared with D-/R- transplants (P = .0078). These are effector memory cells (CCR7-/CD45RA+/-) that express T-bet, Eomesodermin, granzyme B, secrete Th1 cytokines, and are enriched in CMV-specific T cells. These cells are associated with decreased T-cell receptor diversity (P < .0001) and reduced proportions of major histocompatibility class (MHC) II expressing classical monocytes (P < .0001), myeloid (P = .024), and plasmacytoid dendritic cells (P = .0014). These data describe a highly expanded CD4+ T-cell population and putative mechanisms by which prior donor or recipient CMV exposure may create a lasting immunologic imprint following SCT, providing a rationale for using D- grafts for R- transplant recipients.


Assuntos
Antígenos CD4/imunologia , Antígenos CD57/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células T de Memória/imunologia , Antígenos CD4/análise , Linfócitos T CD4-Positivos/imunologia , Antígenos CD57/análise , Células Cultivadas , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Humanos , Doadores de Tecidos , Transplante Homólogo/efeitos adversos
6.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806963

RESUMO

Predicting response to ICI therapy among patients with renal cell carcinoma (RCC) has been uniquely challenging. We analyzed patient characteristics and clinical correlates from a retrospective single-site cohort of advanced RCC patients receiving anti-PD-1/PD-L1 monotherapy (N = 97), as well as molecular parameters in a subset of patients, including multiplexed immunofluorescence (mIF), whole exome sequencing (WES), T cell receptor (TCR) sequencing, and RNA sequencing (RNA-seq). Clinical factors such as the development of immune-related adverse events (odds ratio (OR) = 2.50, 95% confidence interval (CI) = 1.05-5.91) and immunological prognostic parameters, including a higher percentage of circulating lymphocytes (23.4% vs. 17.4%, p = 0.0015) and a lower percentage of circulating neutrophils (61.8% vs. 68.5%, p = 0.0045), correlated with response. Previously identified gene expression signatures representing pathways of angiogenesis, myeloid inflammation, T effector presence, and clear cell signatures also correlated with response. High PD-L1 expression (>10% cells) as well as low TCR diversity (≤644 clonotypes) were associated with improved progression-free survival (PFS). We corroborate previously published findings and provide preliminary evidence of T cell clonality impacting the outcome of RCC patients. To further biomarker development in RCC, future studies will benefit from integrated analysis of multiple molecular platforms and prospective validation.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32152246

RESUMO

Non-Hodgkin lymphomas (NHLs) are a diverse group of entities, both clinically and molecularly. Here, we review the evolution of classification schemes in B-cell lymphoma, noting the now standard WHO classification system that is based on immune cell-of-origin and molecular phenotypes. We review how lymphomas arise throughout the B-cell development process as well as the molecular and clinical features of prominent B-cell lymphomas. We provide an overview of the major progress that has occurred over the past decade in terms of our molecular understanding of these diseases. We discuss treatment options available and focus on a number of the diverse research tools that have been employed to improve our understanding of these diseases. We discuss the problem of heterogeneity in lymphomas and anticipate that the near future will bring significant advances that provide a measurable impact on NHL outcomes.


Assuntos
Linfócitos B/patologia , Linfoma de Células B/terapia , Linfoma não Hodgkin/terapia , Humanos , Linfoma de Células B/classificação , Linfoma não Hodgkin/classificação , Organização Mundial da Saúde
8.
Blood ; 134(19): 1598-1607, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31558468

RESUMO

Burkitt lymphoma (BL) is an aggressive, MYC-driven lymphoma comprising 3 distinct clinical subtypes: sporadic BLs that occur worldwide, endemic BLs that occur predominantly in sub-Saharan Africa, and immunodeficiency-associated BLs that occur primarily in the setting of HIV. In this study, we comprehensively delineated the genomic basis of BL through whole-genome sequencing (WGS) of 101 tumors representing all 3 subtypes of BL to identify 72 driver genes. These data were additionally informed by CRISPR screens in BL cell lines to functionally annotate the role of oncogenic drivers. Nearly every driver gene was found to have both coding and non-coding mutations, highlighting the importance of WGS for identifying driver events. Our data implicate coding and non-coding mutations in IGLL5, BACH2, SIN3A, and DNMT1. Epstein-Barr virus (EBV) infection was associated with higher mutation load, with type 1 EBV showing a higher mutational burden than type 2 EBV. Although sporadic and immunodeficiency-associated BLs had similar genetic profiles, endemic BLs manifested more frequent mutations in BCL7A and BCL6 and fewer genetic alterations in DNMT1, SNTB2, and CTCF. Silencing mutations in ID3 were a common feature of all 3 subtypes of BL. In vitro, mass spectrometry-based proteomics demonstrated that the ID3 protein binds primarily to TCF3 and TCF4. In vivo knockout of ID3 potentiated the effects of MYC, leading to rapid tumorigenesis and tumor phenotypes consistent with those observed in the human disease.


Assuntos
Linfoma de Burkitt/genética , Sequenciamento Completo do Genoma/métodos , Animais , Humanos , Camundongos
9.
Hematol Oncol ; 37(4): 375-382, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408531

RESUMO

In large B-cell lymphoma (LBCL), MYC translocation and MYC/BCL2 or MYC/BCL6 double hit (DH) are associated with poor prognosis, and there is an unmet need for novel treatment targets in this patient group. Treatments targeting the PD-L1/PD-1 pathway are still poorly elucidated in LBCL. PD-L1 expression might predict response to treatment targeting the PD-L1/PD-1 pathway. We therefore investigated the relationship between PD-L1 protein and mRNA expression levels and MYC and DH translocation in LBCL. We detected MYC, BCL2, and BCL6 translocation by fluorescent in situ hybridization in tissue samples from 130 patients randomly selected from two cohorts of patients with LBCL: 49 patients with MYC translocation of whom 36 had DH and 81 without MYC translocation. PD-L1 protein expression was detected by immunohistochemistry (IHC) in tissue samples from 77 patients and PD-L1 mRNA expression by next-generation RNA sequencing (NGS) in another 77 patients. Twenty-four patients overlapped, ie, were analysed with both IHC and NGS. Nonparametric tests were performed to evaluate intergroup differences. PD-L1 protein expression level was significantly lower in patients with MYC (n = 42, median = 3.3%, interquartile range [IQR] 0.0-10.8) or DH translocations (n = 31, median = 3.3%, IQR 0.0-10.0) compared with patients with no MYC (n = 35, median = 16.7%, IQR 3.3-30.0) or no DH translocations (n = 46, 13.3%, IQR 2.5-30.0), P = .004 and P ≤ .001, respectively. PD-L1 mRNA expression was also significantly lower in patients with MYC or DH translocations, P = .001 and P = .006, respectively. Higher PD-L1 protein and mRNA expression levels were associated with non-germinal centre (GC) type compared with germinal centre B-cell (GCB)-type diffuse LBCL (DLBCL), P = .004 and P = .002, respectively. In conclusion, we report an association between low PD-L1 expression and MYC and DH translocation in patients with LBCL. Our findings may indicate that patients with MYC or DH translocation may benefit less from treatment with PD-L1/PD-1-inhibitors compared with patients without these translocations. This should be evaluated in larger, prospective, consecutive trials.


Assuntos
Antígeno B7-H1/biossíntese , Regulação Neoplásica da Expressão Gênica , Genes myc , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Translocação Genética , Adulto , Idoso , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Antígeno B7-H1/genética , Feminino , Perfilação da Expressão Gênica , Genes bcl-2 , Centro Germinativo/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Estudos Retrospectivos
10.
J Clin Immunol ; 39(7): 678-687, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31377970

RESUMO

PURPOSE: To evaluate mortality risk factors in pediatric-onset common variable immunodeficiency disorders (CVID), we evaluated the largest single-institution cohort of pediatric-onset CVID patients. Previous publications on CVID have provided valuable descriptive data, but lack risk stratification to guide physicians in management of these patients. METHODS: Retrospective chart review of 198 subjects with CVID at a single institution, of whom 91 had disease onset at a pediatric age. Clinical and laboratory data were collected at diagnosis and in follow-up. Odds ratios and Fisher tests were utilized to examine trends. This study was approved by an institutional review board. RESULTS: Clinical features and laboratory results for subjects diagnosed with CVID at a pediatric age are similar to those who had adult-onset CVID. However, majority of the deceased subjects (13/18) were at a pediatric age at CVID symptom onset. These subjects had a lower age at mortality, multiple comorbidities, and often depression. The most common cause of death was infection. Lung disease (OR 5, p < 0.05) and infection with severe/opportunistic organisms (OR 9, p < 0.05) are directly related to increased mortality. Delay in diagnosis of CVID is also correlated with mortality. Intermediary markers correlating with mortality include anemia, GERD, and depression. CONCLUSIONS: There are many similarities between patients with pediatric- and adult-onset CVID; however, the mortality of pediatric CVID in our cohort is striking. This is the first study to identify specific factors correlated with mortality in pediatric-onset CVID to guide pediatricians and subspecialists in managing these immunodeficient patients.


Assuntos
Imunodeficiência de Variável Comum/epidemiologia , Adolescente , Adulto , Idade de Início , Criança , Imunodeficiência de Variável Comum/diagnóstico , Imunodeficiência de Variável Comum/etiologia , Imunodeficiência de Variável Comum/mortalidade , Comorbidade , Diagnóstico Tardio , Suscetibilidade a Doenças , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Mortalidade , Razão de Chances , Fenótipo , Prognóstico , Adulto Jovem
11.
Nature ; 569(7757): 503-508, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068700

RESUMO

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Assuntos
Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Etnicidade/genética , Edição de Genes , Histonas/metabolismo , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias/metabolismo , Análise Serial de Proteínas , Splicing de RNA
13.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333301

RESUMO

Cancer results from the accumulation of genetic mutations in a susceptible cell of origin. We and others have also shown that injury promotes sarcoma development, but how injury cooperates with genetic mutations at the earliest stages of tumor formation is not known. Here, we utilized dual recombinase technology to dissect the complex interplay of the timing of KrasG12D activation, p53 deletion, and muscle injury in sarcomagenesis using a primary mouse model of soft tissue sarcoma. When mutations in oncogenic Kras and p53 are separated by 3 weeks, few sarcomas develop without injury. However, the transformation potential of these tumor-initiating cells can be unmasked by muscle injury. In the absence of Kras mutations, injury of the muscle with global deletion of p53 results in sarcomas with amplification of chromosomal regions encompassing the Met or Yap1 gene. These findings demonstrate a complex interplay between the timing of genetic mutations and perturbations in the tumor microenvironment, which provides insight into the earliest stages of sarcoma development.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Musculares/etiologia , Músculo Esquelético/lesões , Sarcoma Experimental/etiologia , Ferimentos e Lesões/complicações , Animais , Linhagem Celular Tumoral , DNA Nucleotidiltransferases/genética , Modelos Animais de Doenças , Integrases/genética , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética
14.
PLoS Pathog ; 14(5): e1007057, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775485

RESUMO

Within the liver a single Plasmodium parasite transforms into thousands of blood-infective forms to cause malaria. Here, we use RNA-sequencing to identify host genes that are upregulated upon Plasmodium berghei infection of hepatocytes with the hypothesis that host pathways are hijacked to benefit parasite development. We found that expression of aquaporin-3 (AQP3), a water and glycerol channel, is significantly induced in Plasmodium-infected hepatocytes compared to uninfected cells. This aquaglyceroporin localizes to the parasitophorous vacuole membrane, the compartmental interface between the host and pathogen, with a temporal pattern that correlates with the parasite's expansion in the liver. Depletion or elimination of host AQP3 expression significantly reduces P. berghei parasite burden during the liver stage and chemical disruption by a known AQP3 inhibitor, auphen, reduces P. falciparum asexual blood stage and P. berghei liver stage parasite load. Further use of this inhibitor as a chemical probe suggests that AQP3-mediated nutrient transport is an important function for parasite development. This study reveals a previously unknown potential route for host-dependent nutrient acquisition by Plasmodium which was discovered by mapping the transcriptional changes that occur in hepatocytes throughout P. berghei infection. The dataset reported may be leveraged to identify additional host factors that are essential for Plasmodium liver stage infection and highlights Plasmodium's dependence on host factors within hepatocytes.


Assuntos
Aquaporina 3/metabolismo , Plasmodium berghei/metabolismo , Animais , Aquaporina 3/fisiologia , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Humanos , Fígado/metabolismo , Fígado/parasitologia , Hepatopatias , Malária/parasitologia , Camundongos , Parasitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/parasitologia , Proteínas de Protozoários/metabolismo , Análise de Sequência de RNA/métodos , Esporozoítos/metabolismo , Vacúolos/metabolismo
15.
Front Immunol ; 9: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416542

RESUMO

A family of transcription factors known as E proteins, and their antagonists, Id proteins, regulate T cell differentiation at critical developmental checkpoints. Id proteins promote the differentiation of conventional αß T cells and suppress the expansion of innate-like αß T cells known as invariant natural killer T (iNKT) cells. However, it remains to be determined whether Id proteins differentially regulate these distinct lineage choices in early stages of T cell development. In this manuscript, we report that in Id-deficient mice, uninhibited activity of the E protein family member E2A mediates activation of genes that support iNKT cell development and function. There is also biased rearrangement in Id-deficient DP cells that promotes selection into the iNKT lineage in these mice. The observed expansion of iNKT cells is not abrogated by blocking pre-TCR signaling, which is required for conventional αß T cell development. Finally, E2A is found to be a key transcriptional regulator of both iNKT and γδNKT lineages, which appear to have shared lineage history. Therefore, our study reveals a previously unappreciated role of E2A in coordinating the development of the iNKT lineage at an early stage, prior to their TCR-mediated selection alongside conventional αß T cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas Inibidoras de Diferenciação/fisiologia , Células T Matadoras Naturais/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Animais , Diferenciação Celular , Camundongos Knockout
16.
Cell ; 171(2): 481-494.e15, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985567

RESUMO

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Assuntos
Sistemas CRISPR-Cas , Perfilação da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Células Cultivadas , Exoma , Feminino , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Masculino , Rituximab/administração & dosagem
17.
Blood ; 130(16): 1819-1831, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-28801451

RESUMO

The adult high-grade B-cell lymphomas sharing molecular features with Burkitt lymphoma (BL) are highly aggressive lymphomas with poor clinical outcome. High-resolution structural and functional genomic analysis of adult Burkitt lymphoma (BL) and high-grade B-cell lymphoma with BL gene signature (adult-molecularly defined BL [mBL]) revealed the MYC-ARF-p53 axis as the primary deregulated pathway. Adult-mBL had either unique or more frequent genomic aberrations (del13q14, del17p, gain8q24, and gain18q21) compared with pediatric-mBL, but shared commonly mutated genes. Mutations in genes promoting the tonic B-cell receptor (BCR)→PI3K pathway (TCF3 and ID3) did not differ by age, whereas effectors of chronic BCR→NF-κB signaling were associated with adult-mBL. A subset of adult-mBL had BCL2 translocation and mutation and elevated BCL2 mRNA and protein expression, but had a mutation profile similar to mBL. These double-hit lymphomas may have arisen from a tumor precursor that acquired both BCL2 and MYC translocations and/or KMT2D (MLL2) mutation. Gain/amplification of MIR17HG and its paralogue loci was observed in 50% of adult-mBL. In vitro studies suggested miR-17∼92's role in constitutive activation of BCR signaling and sensitivity to ibrutinib. Overall integrative analysis identified an interrelated gene network affected by copy number and mutation, leading to disruption of the p53 pathway and the BCR→PI3K or NF-κB activation, which can be further exploited in vivo by small-molecule inhibitors for effective therapy in adult-mBL.


Assuntos
Linfoma de Burkitt/genética , Regulação Neoplásica da Expressão Gênica , Linfoma de Células B/genética , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/patologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Imunofenotipagem , Linfoma de Células B/patologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Gradação de Tumores , Adulto Jovem
18.
Nat Commun ; 8: 15999, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691711

RESUMO

Genetically engineered mouse models that employ site-specific recombinase technology are important tools for cancer research but can be costly and time-consuming. The CRISPR-Cas9 system has been adapted to generate autochthonous tumours in mice, but how these tumours compare to tumours generated by conventional recombinase technology remains to be fully explored. Here we use CRISPR-Cas9 to generate multiple subtypes of primary sarcomas efficiently in wild type and genetically engineered mice. These data demonstrate that CRISPR-Cas9 can be used to generate multiple subtypes of soft tissue sarcomas in mice. Primary sarcomas generated with CRISPR-Cas9 and Cre recombinase technology had similar histology, growth kinetics, copy number variation and mutational load as assessed by whole exome sequencing. These results show that sarcomas generated with CRISPR-Cas9 technology are similar to sarcomas generated with conventional modelling techniques and suggest that CRISPR-Cas9 can be used to more rapidly generate genotypically and phenotypically similar cancers.


Assuntos
Sistemas CRISPR-Cas , Integrases , Sarcoma Experimental/genética , Animais , Eletroporação , Edição de Genes/métodos , Masculino , Camundongos , Camundongos Nus , Mutação , Células NIH 3T3 , Neurilemoma/genética , Neurilemoma/patologia , Sarcoma Experimental/patologia
19.
J Immunol ; 198(8): 3136-3148, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258199

RESUMO

Inhibitor of DNA binding (Id) proteins, including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins is associated with a broad spectrum of tumors, recent studies have identified that Id3 plays a tumor-suppressor role in the development of Burkitt's lymphoma in humans and hepatosplenic T cell lymphomas in mice. In this article, we report rapid lymphoma development in Id2/Id3 double-knockout mice that is caused by unchecked expansion of invariant NKT (iNKT) cells or a unique subset of innate-like CD1d-independent T cells. These populations began to expand in neonatal mice and, upon malignant transformation, resulted in mortality between 3 and 11 mo of age. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability along with upregulation of several signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-κB pathway were found to be shared between Id2/Id3 double-knockout lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumorigenic pathways caused by loss of function of Id2 and Id3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas.


Assuntos
Proteína 2 Inibidora de Diferenciação/imunologia , Proteínas Inibidoras de Diferenciação/imunologia , Linfoma/imunologia , Células T Matadoras Naturais/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva , Animais , Separação Celular , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Linfoma/patologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
20.
Cancer Discov ; 7(4): 369-379, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28122867

RESUMO

Hepatosplenic T-cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole-exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy-number alterations in the disease. Chromatin-modifying genes, including SETD2, INO80, and ARID1B, were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%), for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS, and TP53SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates gene mutations linked to HSTL pathogenesis and potential treatment targets.Significance: We report the first systematic application of whole-exome sequencing to define the genetic basis of HSTL, a rare but lethal disease. Our work defines SETD2 as a tumor suppressor gene in HSTL and implicates genes including INO80 and PIK3CD in the disease. Cancer Discov; 7(4); 369-79. ©2017 AACR.See related commentary by Yoshida and Weinstock, p. 352This article is highlighted in the In This Issue feature, p. 339.


Assuntos
DNA Helicases/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Linfoma de Células T/genética , Neoplasias Esplênicas/genética , Proteína Supressora de Tumor p53/genética , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Adulto , Idoso , Sequência de Bases , Criança , Pré-Escolar , Proteínas de Ligação a DNA , Proteína Potenciadora do Homólogo 2 de Zeste , Exoma/genética , Feminino , Humanos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Linfoma de Células T/complicações , Linfoma de Células T/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Esplênicas/complicações , Neoplasias Esplênicas/patologia , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...