Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16374-16383, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617607

RESUMO

Alkenones are unique lipids produced by certain species of microalgae, well-known for use in paleoclimatology, and more recently pursued to advance sustainability across multiple industries. Beginning in 2018, the biosynthesis of alkenones by commercially grown Tisochrysis lutea (T-Iso) microalgae from one of the world's most established producers, Necton S.A., changed dramatically from structures containing 37 and 38 carbons, to unusual shorter-chain C35 and C36 diunsaturated alkenones (C35:2 and C36:2 alkenones). While the exact reasons for this change remain unknown, analysis of alkenones isolated from T-Iso grown in 2021 and 2023 revealed that this change has persisted. The structure of these rare shorter-chain alkenones, including double bond position, produced by Necton T-Iso remained the same over the last five years, which was determined using a new and optimized cross-metathesis derivatization approach with analysis by comprehensive two-dimensional gas chromatography and NMR. However, noticeable differences in the alkenone profiles among the different batches were observed. Combined with fatty acid compositional analysis, the data suggest a connection between these lipid classes (e.g., increased DHA corresponds to lower amounts of shorter-chain alkenones) and the ability to manipulate their biosynthesis in T-Iso with changes to cultivation conditions.

3.
ACS Sustain Chem Eng ; 12(3): 1185-1194, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38273987

RESUMO

While plastic pollution threatens ecosystems and human health, the use of plastic products continues to increase. Limiting its harm requires design strategies for plastic products informed by the threats that plastics pose to the environment. Thus, we developed a sustainability metric for the ecodesign of plastic products with low environmental persistence and uncompromised performance. To do this, we integrated the environmental degradation rate of plastic into established material selection strategies, deriving material indices for environmental persistence. By comparing indices for the environmental impact of on-the-market plastics and proposed alternatives, we show that accounting for the environmental persistence of plastics in design could translate to societal benefits of hundreds of millions of dollars for a single consumer product. Our analysis identifies the materials and their properties that deserve development, adoption, and investment to create functional and less environmentally impactful plastic products.

4.
Appl Environ Microbiol ; 89(12): e0165123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054734

RESUMO

IMPORTANCE: Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.


Assuntos
Microbiota , Plásticos , Biopolímeros , Bactérias/genética , Biodegradação Ambiental , Oceanos e Mares
5.
ACS Environ Au ; 3(5): 319-335, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743953

RESUMO

In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship's underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.

6.
Chemosphere ; 344: 140227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758093

RESUMO

Coastal ecosystems are facing increasing anthropogenic stressors, including rapid urbanization rates and extensive fossil fuel usage. Nevertheless, the distribution of hydrocarbons in the Brazilian semi-arid region remains relatively uncharacterized. In this study, we analyzed ten surface sediment samples (0-2 cm) along the banks of the Acaraú River to assess the chronic contributions of aliphatic and aromatic hydrocarbons. The Acaraú River is a crucial riverine-estuarine area in the semi-arid region of Northeast Brazil. Ultrasound-assisted extraction and gas chromatograph coupled to a mass spectrometer were used to identify target compounds: 45 PAHs, 27 n-alkanes (C10-C38), and two isoprenoids. At most stations, the predominant grain size was sand, and the organic carbon content was less than 1%. The total n-alkanes concentration ranged from 14.1 to 170.0 µg g-1, while individual pristane and phytane concentrations ranged from not detected (nd) to 0.4 µg g-1 and nd to 0.7 µg g-1, respectively. These concentrations resemble those found in unpolluted sediments and are lower compared to samples from urbanized coastal areas. The total USEPA PAHs concentration varied from 157.8 to 1364 ng g-1, leading to the characterization of sediment samples as moderately polluted. Based on diagnostic ratios calculated from both alkane and PAH concentrations, the sediment samples were predominantly deriving from pyrolytic sources, with some contribution from petrogenic sources. The most abundant group was 5-ring PAHs (mean: 47.3 ± 36.7%), followed by 3-ring PAHs (mean: 17.9 ± 13.7%). This predominance indicates a pyrolytic origin of hydrocarbons in the Acaraú River. The concentrations reported here were representative of the level of background hydrocarbons in the region. Regarding the sediment quality assessment, BaP TPE calculated for the Acaraú River ranged from 13.2 to 1258.4 ng g-1 (mean: 409.3 ± 409.4 ng g-1). When considering site-specific sediment quality values for the coast of the state of Ceará, half of the stations are classified as strongly contaminated, and toxic effects are expected to occur (SQGq >0.25) for the ∑16 PAHs measured in the samples, especially due to dibenz [a,h]anthracene concentrations.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Brasil , Rios/química , Ecossistema , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental , Atividades Humanas
7.
Environ Sci Technol ; 57(32): 11988-11998, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37515555

RESUMO

Photochemical weathering transforms petroleum oil and changes its bulk physical properties, as well as its partitioning into seawater. This transformation process is likely to occur in a cold water marine oil spill, but little is known about the behavior of photochemically weathered oil in cold water. We quantified the effect of photochemical weathering on oil properties and partitioning across temperatures. Compared to weathering in the dark, photochemical weathering increases oil viscosity and water-soluble content, decreases oil-seawater interfacial tension, and slightly increases density. Many of these photochemical changes are much larger than changes caused by evaporative weathering. Further, the viscosity and water-soluble content of photochemically weathered oil are more temperature-sensitive compared to evaporatively weathered oil, which changes the importance of key fate processes in warm versus cold environments. Compared to at 30 °C, photochemically weathered oil at 5 °C would have a 16× higher viscosity and a 7× lower water-soluble content, resulting in lower entrainment and dissolution. Collectively, the physical properties and thus fate of photochemically weathered oil in a cold water spill may be substantially different from those in a warm water spill. These differences could affect the choice of oil spill response options in cold, high-light environments.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Temperatura , Poluentes Químicos da Água/análise , Tempo (Meteorologia) , Água do Mar/química , Água
8.
Environ Sci Technol ; 57(21): 7966-7977, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37186871

RESUMO

Sunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity. However, at the molecular level, RNA sequencing revealed differences in the number of differentially expressed genes (DEGs) for each leachate treatment: thousands of genes (5442 P, 577 D) for the additive-free film, tens of genes for the additive-containing conventional bag (14 P, 7 D), and none for the additive-containing recycled bag. Gene ontology enrichment analyses suggested that the additive-free PE leachates disrupted neuromuscular processes via biophysical signaling; this was most pronounced for the photoproduced leachates. We suggest that the fewer DEGs elicited by the leachates from conventional PE bags (and none from recycled bags) could be due to differences in photoproduced leachate composition caused by titanium dioxide-catalyzed reactions not present in the additive-free PE. This work demonstrates that the potential toxicity of plastic photoproducts can be product formulation-specific.


Assuntos
Polietileno , Poluentes Químicos da Água , Animais , Polietileno/toxicidade , Peixe-Zebra , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Plásticos/toxicidade , Água
9.
Crit Rev Anal Chem ; 53(8): 1638-1697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35254870

RESUMO

Analytical techniques for chemical analysis of oil, oil photochemical and biological transformation products, and dispersants and their biodegradation products benefited significantly from research following the 2010 Deepwater Horizon (DWH) disaster. Crude oil and weathered-oil matrix reference materials were developed based on the Macondo well oil and characterized for polycyclic aromatic hydrocarbons, hopanes, and steranes for use to assure and improve the quality of analytical measurements in oil spill research. Advanced gas chromatography (GC) techniques such as comprehensive two-dimensional GC (GC × GC), pyrolysis GC with mass spectrometry (MS), and GC with tandem MS (GC-MS/MS) provide a greater understanding at the molecular level of composition and complexity of oil and weathering changes. The capabilities of high-resolution MS (HRMS) were utilized to extend the analytical characterization window beyond conventional GC-based methods to include polar and high molecular mass components (>400 Da) and to provide new opportunities for discovery, characterization, and investigation of photooxidation and biotransformation products. Novel separation approaches to reduce the complexity of the oil and weathered oil prior to high-resolution MS and advanced fluorescence spectrometry have increased the information available on spilled oil and transformation products. HRMS methods were developed to achieve the required precision and sensitivity for detection of dispersants and to provide molecular-level characterization of the complex surfactants. Overall, research funding following the DWH oil spill significantly advanced and expanded the use of analytical techniques for chemical analysis to support petroleum and dispersant characterization and investigations of fate and effects of not only the DWH oil spill but future spills.


Assuntos
Desastres , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Petróleo/análise , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 56(19): 13810-13819, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103552

RESUMO

Sunlight chemically transforms marine plastics into a suite of products, with formulation─the specific mixture of polymers and additives─driving rates and products. However, the effect of light-driven transformations on subsequent microbial lability is poorly understood. Here, we examined the interplay between photochemical and biological degradation of fabrics made from cellulose diacetate (CDA), a biobased polymer used commonly in consumer products. We also examined the influence of ∼1% titanium dioxide (TiO2), a common pigment and photocatalyst. We sequentially exposed CDA to simulated sunlight and native marine microbes to understand how photodegradation influences metabolic rates and pathways. Nuclear magnetic resonance spectroscopy revealed that sunlight initiated chain scission reactions, reducing CDA's average molecular weight. Natural abundance carbon isotope measurements demonstrated that chain scission ultimately yields CO2, a newly identified abiotic loss term of CDA in the environment. Measurements of fabric mass loss and enzymatic activities in seawater implied that photodegradation enhanced biodegradation by performing steps typically facilitated by cellulase. TiO2 accelerated CDA photodegradation, expediting biodegradation. Collectively, these findings (i) underline the importance of formulation in plastic's environmental fate and (ii) suggest that overlooking synergy between photochemical and biological degradation may lead to overestimates of marine plastic persistence.


Assuntos
Celulases , Luz Solar , Dióxido de Carbono , Isótopos de Carbono , Celulose/análogos & derivados , Oceanos e Mares , Plásticos/química , Polímeros , Titânio/química
11.
Environ Pollut ; 314: 120283, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180002

RESUMO

The main objective of this study was to investigate the 2019 and 2022 oil spill events that occurred off the coast of the State of Ceará, Northeastern Brazil. To further assess these mysterious oil spills, we investigated whether the oils stranded on the beaches of Ceará in 2019 and 2022 had the same origin, whether their compositional differences were due to weathering processes, and whether the materials from both were natural or industrially processed. We collected oil samples in October 2019 and January 2022, soon after their appearance on the beaches. We applied a forensic environmental geochemistry approach using both one-dimensional and two-dimensional gas chromatography to assess chemical composition. The collected material had characteristics of crude oil and not refined oils. In addition, the 2022 oil samples collected over 130 km of the east coast of Ceará had a similar chemical profile and were thus considered to originate from the same source. However, these oils had distinct biomarker profiles compared to those of the 2019 oils, including resistant terpanes and triaromatic steranes, thus excluding the hypothesis that the oil that reached the coast of Ceará in January 2022 is related to the tragedy that occurred in 2019. From a geochemical perspective, the oil released in 2019 is more thermally mature than that released in 2022, with both having source rocks with distinct types of organic matter and depositional environments. As the coast of Ceará has vast ecological diversity and Marine Protected Areas, the possibility of occasional oil spills in the area causing severe environmental pollution should be investigated from multiple perspectives, including forensic environmental geochemistry.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Brasil , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Petróleo/análise , Óleos , Biomarcadores
12.
iScience ; 25(9): 104916, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36148430

RESUMO

Food waste is an abundant and inexpensive resource for the production of renewable fuels. Biocrude yields obtained from hydrothermal liquefaction (HTL) of food waste can be boosted using hydroxyapatite (HAP) as an inexpensive and abundant catalyst. Combining HAP with an inexpensive homogeneous base increased biocrude yield from 14 ± 1 to 37 ± 3%, resulting in the recovery of 49 ± 2% of the energy contained in the food waste feed. Detailed product analysis revealed the importance of fatty-acid oligomerization during biocrude formation, highlighting the role of acid-base catalysts in promoting condensation reactions. Economic and environmental analysis found that the new technology has the potential to reduce US greenhouse gas emissions by 2.6% while producing renewable diesel with a minimum fuel selling price of $1.06/GGE. HAP can play a role in transforming food waste from a liability to a renewable fuel.

13.
Mar Pollut Bull ; 180: 113791, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665617

RESUMO

The International Marine Organization 2020 Global Sulfur Cap requires ships to burn fuels with <0.50% S and some countries require <0.10% S in certain Sulfur Emission Control Areas but little is known about these new types of fuels. Using both traditional GC-MS and more advanced chromatographic and mass spectrometry techniques, plus stable isotopic, δ13C and δ2H, analyses of pristane, phytane and n-alkanes, the organic components of a suite of three 0.50% S and three 0.10% S compliant fuels were characterized. Two oils were found to be near identical but all of the remaining oils could be forensically distinguished by comparison of their molecular biomarkers and by the profiles of the heterocyclic parent and alkylated homologues. Oils could also be differentiated by their δ13C and δ2H of n-alkanes and isoprenoids. This study provides important forensic data that may prove invaluable in the event of future oil spills.


Assuntos
Óleos Combustíveis , Alcanos/análise , Óleos Combustíveis/análise , Óleos , Navios , Enxofre/análise
14.
Mar Environ Res ; 175: 105569, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35248985

RESUMO

Crude oil released into the environment undergoes weathering processes that gradually change its composition and toxicity. Co-exposure to petroleum mixtures and other stressors, including ultraviolet (UV) radiation, may lead to synergistic effects and increased toxicity. Laboratory studies should consider these factors when testing the effects of oil exposure on aquatic organisms. Here, we study transcriptomic responses of the estuarine sea anemone Nematostella vectensis to naturally weathered oil, with or without co-exposure to environmental levels of UV radiation. We find that co-exposure greatly enhances the response. We use bioinformatic analyses to identify molecular pathways implicated in this response, which suggest phototoxicity and oxidative damage as mechanisms for the enhanced stress response. Nematostella's stress response shares similarities with the vertebrate oxidative stress response, implying deep conservation of certain stress pathways in animals. We show that exposure to weathered oil along with surface-level UV exposure has substantial physiological consequences in a model cnidarian.


Assuntos
Petróleo , Anêmonas-do-Mar , Animais , Organismos Aquáticos , Petróleo/metabolismo , Petróleo/toxicidade , Anêmonas-do-Mar/fisiologia , Raios Ultravioleta , Tempo (Meteorologia)
16.
ACS Environ Au ; 2(5): 467-479, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37101454

RESUMO

In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or "nurdles" (∼1680 tons), littering the country's coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.

17.
ACS Environ Au ; 2(2): 128-135, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37101587

RESUMO

In May 2021, the M/V X-Press Pearl cargo ship caught fire 18 km off the west coast of Sri Lanka and spilled ∼1680 tons of spherical pieces of plastic or "nurdles" (∼5 mm; white in color). Nurdles are the preproduction plastic used to manufacture a wide range of end products. Exposure to combustion, heat, and chemicals led to agglomeration, fragmentation, charring, and chemical modification of the plastic, creating an unprecedented complex spill of visibly burnt plastic and unburnt nurdles. These pieces span a continuum of colors, shapes, sizes, and densities with high variability that could impact cleanup efforts, alter transport in the ocean, and potentially affect wildlife. Visibly burnt plastic was 3-fold more chemically complex than visibly unburnt nurdles. This added chemical complexity included combustion-derived polycyclic aromatic hydrocarbons. A portion of the burnt material contained petroleum-derived biomarkers, indicating that it encountered some fossil-fuel products during the spill. The findings of this research highlight the added complexity caused by the fire and subsequent burning of plastic for cleanup operations, monitoring, and damage assessment and provides recommendations to further understand and combat the impacts of this and future spills.

18.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725256

RESUMO

Collecting and removing ocean plastics can mitigate their environmental impacts; however, ocean cleanup will be a complex and energy-intensive operation that has not been fully evaluated. This work examines the thermodynamic feasibility and subsequent implications of hydrothermally converting this waste into a fuel to enable self-powered cleanup. A comprehensive probabilistic exergy analysis demonstrates that hydrothermal liquefaction has potential to generate sufficient energy to power both the process and the ship performing the cleanup. Self-powered cleanup reduces the number of roundtrips to port of a waste-laden ship, eliminating the need for fossil fuel use for most plastic concentrations. Several cleanup scenarios are modeled for the Great Pacific Garbage Patch (GPGP), corresponding to 230 t to 11,500 t of plastic removed yearly; the range corresponds to uncertainty in the surface concentration of plastics in the GPGP. Estimated cleanup times depends mainly on the number of booms that can be deployed in the GPGP without sacrificing collection efficiency. Self-powered cleanup may be a viable approach for removal of plastics from the ocean, and gaps in our understanding of GPGP characteristics should be addressed to reduce uncertainty.


Assuntos
Monitoramento Ambiental/métodos , Plásticos/química , Estudos de Viabilidade , Resíduos de Alimentos , Oceanos e Mares , Termodinâmica , Resíduos/análise
19.
Environ Sci Technol ; 55(18): 12383-12392, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34494430

RESUMO

Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15-36% inorganic additives, primarily calcium carbonate (13-34%) and titanium dioxide (TiO2; 1-2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68-94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.


Assuntos
Carbono , Plásticos , Oceanos e Mares , Polietileno , Luz Solar
20.
ACS Omega ; 6(35): 22803-22810, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514251

RESUMO

The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...