Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 98(1): 67-74.e4, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29551493

RESUMO

Animals rely on mechanosensory feedback from proprioceptors to control locomotory body movements. Unexpectedly, we found that this movement control requires visual opsins. Disrupting the Drosophila opsins NINAE or Rh6 impaired larval locomotion and body contractions, independently of light and vision. Opsins were detected in chordotonal proprioceptors along the larval body, localizing to their ciliated dendrites. Loss of opsins impaired mechanically evoked proprioceptor spiking and cilium ultrastructure. Without NINAE or Rh6, NOMPC mechanotransduction channels leaked from proprioceptor cilia and ciliary Inactive (Iav) channels partly disappeared. Locomotion is shown to require opsins in proprioceptors, and the receptors are found to express the opsin gene Rh7, in addition to ninaE and Rh6. Besides implicating opsins in movement control, this documents roles of non-ciliary, rhabdomeric opsins in cilium organization, providing a model for a key transition in opsin evolution and suggesting that structural roles of rhabdomeric opsins preceded their use for light detection.


Assuntos
Proteínas de Drosophila/biossíntese , Larva/metabolismo , Locomoção/fisiologia , Propriocepção/fisiologia , Rodopsina/biossíntese , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/análise , Drosophila melanogaster , Feminino , Larva/química , Masculino , Mecanotransdução Celular/fisiologia , Rodopsina/análise
2.
Ann Neurosci ; 25(4): 299-304, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31000970

RESUMO

BACKGROUND/AIMS: Physical exhaustion is not always peripheral, and it is the brain that causes the sensation of fatigue either due to decrease of metabolic resources or due to central activation process that regulates attention and performance. This study was undertaken to observe the variations in event-related potentials (ERPs) and cognitive performance after an exhausting physical exercise. METHODS: A total of 60 healthy young adult subjects were included in the study. The study was conducted in 2 phases with at least a week gap between the phases. The participants answered a Multidimensional Fatigue Inventory (MFI-20) questionnaire before and after trials in each phase to measure the induced physical exhaustion. In phase I (control trial), the ERP data were processed using P300, Standard auditory "oddball paradigm," on computerized evoked potential recorder (RMS EMG MK-2) using 10/20 system to know the engagement of attention after which participants were given to perform cognitive tasks such as "Stroop Test, Trial Making Test and Mini Mental State Examination." In Phase II (exercise trial), the participants were instructed to cycle as hard as they could, till they could not continue anymore, which was followed by recording of P300-evoked potentials and performance of cognitive tasks as in Phase I. Paired t test was used to compare between any dependent variables. RESULTS: Fatigue-related subjective measures (MFI-20) showed that both mental and physical exhaustion were significantly greater in the exercise-involved cognitive trial than in the control trial. Lower P300 latencies reflect faster reaction time; however, their response accuracies were poorer resulting in poorer cognitive performances. Participants subjected to control trial performed better in terms of higher percentage accuracy but with slow reaction time. CONCLUSION: The participants experienced more fatigue physically and mentally during the exercise that involved cognitive tasks. An apparent decrease in attention based on decreased percentage accuracy of response was evident, implying that fatigue, performance, and attention are interdependent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...