Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 18(1): 15-25, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453826

RESUMO

KKT4 is a multi-domain kinetochore protein specific to kinetoplastids, such as Trypanosoma brucei. It lacks significant sequence similarity to known kinetochore proteins in other eukaryotes. Our recent X-ray structure of the C-terminal region of KKT4 shows that it has a tandem BRCT (BRCA1 C Terminus) domain fold with a sulfate ion bound in a typical binding site for a phosphorylated serine or threonine. Here we present the 1H, 13C and 15N resonance assignments for the BRCT domain of KKT4 (KKT4463-645) from T. brucei. We show that the BRCT domain can bind phosphate ions in solution using residues involved in sulfate ion binding in the X-ray structure. We have used these assignments to characterise the secondary structure and backbone dynamics of the BRCT domain in solution. Mutating the residues involved in phosphate ion binding in T. brucei KKT4 BRCT results in growth defects confirming the importance of the BRCT phosphopeptide-binding activity in vivo. These results may facilitate rational drug design efforts in the future to combat diseases caused by kinetoplastid parasites.


Assuntos
Cinetocoros , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Trypanosoma brucei brucei , Cinetocoros/metabolismo , Cinetocoros/química , Sequência de Aminoácidos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Estrutura Secundária de Proteína
2.
Proteins ; 92(2): 219-235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814578

RESUMO

Interleukin-4 (IL-4) is a hematopoietic cytokine composed by a four-helix bundle stabilized by an antiparallel beta-sheet and three disulfide bonds: Cys3-Cys127, Cys24-Cys65, and Cys46-Cys99. IL-4 is involved in several immune responses associated to infection, allergy, autoimmunity, and cancer. Besides its physiological relevance, IL-4 is often used as a "model" for protein design and engineering. Hence, to understand the role of each disulfide in the structure and dynamics of IL-4, we carried out several spectroscopic analyses (circular dichroism [CD], fluorescence, nuclear magnetic resonance [NMR]), and molecular dynamics (MD) simulations on wild-type IL-4 and four IL-4 disulfide mutants. All disulfide mutants showed loss of structure, altered interhelical angles, and looser core packings, showing that all disulfides are relevant for maintaining the overall fold and stability of the four-helix bundle motif, even at very low pH. In the absence of the disulfide connecting both protein termini Cys3-Cys127, C3T-IL4 showed a less packed protein core, loss of secondary structure (~9%) and fast motions on the sub-nanosecond time scale (lower S2 order parameters and larger τc correlation time), especially at the two protein termini, loops, beginning of helix A and end of helix D. In the absence of Cys24-Cys65, C24T-IL4 presented shorter alpha-helices (14% loss in helical content), altered interhelical angles, less propensity to form the small anti-parallel beta-sheet and increased dynamics. Simultaneously deprived of two disulfides (Cys3-Cys127 and Cys24-Cys65), IL-4 formed a partially folded "molten globule" with high 8-anilino-1-naphtalenesulphonic acid-binding affinity and considerable loss of secondary structure (~50%decrease), as shown by the far UV-CD, NMR, and MD data.


Assuntos
Dissulfetos , Interleucina-4 , Conformação Proteica , Interleucina-4/química , Dissulfetos/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Dicroísmo Circular
3.
Cell Rep ; 42(11): 113375, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37980572

RESUMO

Membraneless organelles, or biomolecular condensates, enable cells to compartmentalize material and processes into unique biochemical environments. While specific, attractive molecular interactions are known to stabilize biomolecular condensates, repulsive interactions, and the balance between these opposing forces, are largely unexplored. Here, we demonstrate that repulsive and attractive electrostatic interactions regulate condensate stability, internal mobility, interfaces, and selective partitioning of molecules both in vitro and in cells. We find that signaling ions, such as calcium, alter repulsions between model Ddx3 and Ddx4 condensate proteins by directly binding to negatively charged amino acid sidechains and effectively inverting their charge, in a manner fundamentally dissimilar to electrostatic screening. Using a polymerization model combined with generalized stickers and spacers, we accurately quantify and predict condensate stability over a wide range of pH, salt concentrations, and amino acid sequences. Our model provides a general quantitative treatment for understanding how charge and ions reversibly control condensate stability.


Assuntos
Organelas , Proteínas , Organelas/metabolismo , Proteínas/metabolismo , DNA Helicases/metabolismo , RNA Helicases DEAD-box/metabolismo , Íons/análise , Íons/metabolismo
4.
Anal Chem ; 94(38): 12971-12980, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36098546

RESUMO

Ru-based catalysis results in highly unsaturated fatty acid (HUFA) ethyl esters (EE) deuterated to various extents. The products carry 2H (D) mainly at their bis-allylic positions, where they are resistant to autoxidation compared to natural HUFA and are promising as neurological and retinal drugs. We characterized the extent of deuteration at each allylic position of docosa-4,7,10,13,16,19-hexaenoic acid deuterated to completion at bis-allylic and allylic positions (D-DHA) by two-dimensional (2D) and high-field (600 and 950 MHz) NMR. In separate experiments, the kinetics of docosahexaenoic acid (DHA) EE deuteration was evaluated using Paternò-Büchi (PB) reaction tandem mass spectrometry (MS/MS) analysis, enabling deuteration to be quantitatively characterized for isotopologues (D0-D14 DHA) at each internal allylic position. NMR analysis shows that the net deuteration of the isotopologue mixture is about 94% at the bis-allylic positions, and less than 1% remained as the protiated -CH2-. MS analysis shows that deuteration kinetics follow an increasing curve at bis-allylic positions with higher rate for internal bis-allylic positions. Percent D of bis-allylic positions increases linearly from D1 to D9 in which all internal bis-allylic positions (C9, C12, C15) deuterate uniformly and more rapidly than external bis-allylic positions (C6, C18). The mono-allylic positions near the methyl end (C21) show a steep increase of D only after the D10 isotopologue has been deuterated to >90%, while the mono-allylic position near the carboxyl position, C3, deuterates last and least. These data establish detailed methods for the characterization of Ru-catalyzed deuteration of HUFA as well as the phenomenological reaction kinetics as net product is formed.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos , Catálise , Ácidos Graxos Insaturados , Imidazóis , Sulfonamidas , Espectrometria de Massas em Tandem , Tiofenos
5.
J Biol Chem ; 297(6): 101392, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758357

RESUMO

The α1-acid glycoprotein (AGP) is an abundant blood plasma protein with important immunomodulatory functions coupled to endogenous and exogenous ligand-binding properties. Its affinity for many drug-like structures, however, means AGP can have a significant effect on the pharmokinetics and pharmacodynamics of numerous small molecule therapeutics. Staurosporine, and its hydroxylated forms UCN-01 and UCN-02, are kinase inhibitors that have been investigated at length as antitumour compounds. Despite their potency, these compounds display poor pharmokinetics due to binding to both AGP variants, AGP1 and AGP2. The recent renewed interest in UCN-01 as a cytostatic protective agent prompted us to solve the structure of the AGP2-UCN-01 complex by X-ray crystallography, revealing for the first time the precise binding mode of UCN-01. The solution NMR suggests AGP2 undergoes a significant conformational change upon ligand binding, but also that it uses a common set of sidechains with which it captures key groups of UCN-01 and other small molecule ligands. We anticipate that this structure and the supporting NMR data will facilitate rational redesign of small molecules that could evade AGP and therefore improve tissue distribution.


Assuntos
Antineoplásicos/química , Orosomucoide/química , Estaurosporina/análogos & derivados , Cristalografia por Raios X , Humanos , Ligação Proteica , Domínios Proteicos , Estaurosporina/química
6.
Nat Commun ; 12(1): 4625, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330923

RESUMO

Bacteria often secrete diffusible protein toxins (bacteriocins) to kill bystander cells during interbacterial competition. Here, we use biochemical, biophysical and structural analyses to show how a bacteriocin exploits TolC, a major outer-membrane antibiotic efflux channel in Gram-negative bacteria, to transport itself across the outer membrane of target cells. Klebicin C (KlebC), a rRNase toxin produced by Klebsiella pneumoniae, binds TolC of a related species (K. quasipneumoniae) with high affinity through an N-terminal, elongated helical hairpin domain common amongst bacteriocins. The KlebC helical hairpin opens like a switchblade to bind TolC. A cryo-EM structure of this partially translocated state, at 3.1 Å resolution, reveals that KlebC associates along the length of the TolC channel. Thereafter, the unstructured N-terminus of KlebC protrudes beyond the TolC iris, presenting a TonB-box sequence to the periplasm. Association with proton-motive force-linked TonB in the inner membrane drives toxin import through the channel. Finally, we demonstrate that KlebC binding to TolC blocks drug efflux from bacteria. Our results indicate that TolC, in addition to its known role in antibiotic export, can function as a protein import channel for bacteriocins.


Assuntos
Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Canais Iônicos/metabolismo , Klebsiella/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Transporte Biológico , Microscopia Crioeletrônica/métodos , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica
7.
Biomolecules ; 11(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926076

RESUMO

Multiple crystal structures of the homo-trimeric protein disulphide isomerase PmScsC reveal that the peptide which links the trimerization stalk and catalytic domain can adopt helical, ß-strand and loop conformations. This region has been called a 'shape-shifter' peptide. Characterisation of this peptide using NMR experiments and MD simulations has shown that it is essentially disordered in solution. Analysis of the PmScsC crystal structures identifies the role of intermolecular contacts, within an assembly of protein molecules, in stabilising the different linker peptide conformations. These context-dependent conformational properties may be important functionally, allowing for the binding and disulphide shuffling of a variety of protein substrates to PmScsC. They also have a relevance for our understanding of protein aggregation and misfolding showing how intermolecular quaternary interactions can lead to ß-sheet formation by a sequence that in other contexts adopts a helical structure. This 'shape-shifting' peptide region within PmScsC is reminiscent of one-to-many molecular recognition features (MoRFs) found in intrinsically disordered proteins which are able to adopt different conformations when they fold upon binding to their protein partners.


Assuntos
Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios Proteicos , Proteus mirabilis/enzimologia , Proteus mirabilis/metabolismo
8.
Structure ; 29(9): 1014-1028.e8, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33915106

RESUMO

The kinetochore is the macromolecular machinery that drives chromosome segregation by interacting with spindle microtubules. Kinetoplastids (such as Trypanosoma brucei), a group of evolutionarily divergent eukaryotes, have a unique set of kinetochore proteins that lack any significant homology to canonical kinetochore components. To date, KKT4 is the only kinetoplastid kinetochore protein that is known to bind microtubules. Here we use X-ray crystallography, NMR spectroscopy, and crosslinking mass spectrometry to characterize the structure and dynamics of KKT4. We show that its microtubule-binding domain consists of a coiled-coil structure followed by a positively charged disordered tail. The structure of the C-terminal BRCT domain of KKT4 reveals that it is likely a phosphorylation-dependent protein-protein interaction domain. The BRCT domain interacts with the N-terminal region of the KKT4 microtubule-binding domain and with a phosphopeptide derived from KKT8. Taken together, these results provide structural insights into the unconventional kinetoplastid kinetochore protein KKT4.


Assuntos
Cinetocoros/química , Proteínas Associadas aos Microtúbulos/química , Proteínas de Protozoários/química , Sítios de Ligação , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/metabolismo
9.
Biomol NMR Assign ; 14(2): 309-315, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32696260

RESUMO

KKT4 is a kinetoplastid-specific microtubule-binding kinetochore protein that lacks significant similarity to any known kinetochore or microtubule-binding proteins. Here we present the 1H, 13C and 15N resonance assignments for several fragments from the microtubule-binding domain of KKT4 (KKT4115-343) from Trypanosoma brucei. These assignments provide the starting point for detailed investigations of the structure, dynamics and interactions of the microtubule-binding region of KKT4.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Proteínas de Protozoários/análise , Proteínas de Protozoários/química , Trypanosoma brucei brucei/metabolismo , Isótopos de Nitrogênio , Domínios Proteicos
10.
Elife ; 92020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32568066

RESUMO

Local structural frustration, the existence of mutually exclusive competing interactions, may explain why some proteins are dynamic while others are rigid. Frustration is thought to underpin biomolecular recognition and the flexibility of protein-binding sites. Here, we show how a small chemical modification, the oxidation of two cysteine thiols to a disulfide bond, during the catalytic cycle of the N-terminal domain of the key bacterial oxidoreductase DsbD (nDsbD), introduces frustration ultimately influencing protein function. In oxidized nDsbD, local frustration disrupts the packing of the protective cap-loop region against the active site allowing loop opening. By contrast, in reduced nDsbD the cap loop is rigid, always protecting the active-site thiols from the oxidizing environment of the periplasm. Our results point toward an intricate coupling between the dynamics of the active-site cysteines and of the cap loop which modulates the association reactions of nDsbD with its partners resulting in optimized protein function.


Assuntos
Domínio Catalítico , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Proteínas Periplásmicas/metabolismo , Catálise , Cisteína/metabolismo , Oxirredução , Periplasma/metabolismo , Ligação Proteica , Compostos de Sulfidrila/metabolismo
11.
Nat Commun ; 11(1): 1305, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161270

RESUMO

Coordination of outer membrane constriction with septation is critical to faithful division in Gram-negative bacteria and vital to the barrier function of the membrane. This coordination requires the recruitment of the peptidoglycan-binding outer-membrane lipoprotein Pal at division sites by the Tol system. Here, we show that Pal accumulation at Escherichia coli division sites is a consequence of three key functions of the Tol system. First, Tol mobilises Pal molecules in dividing cells, which otherwise diffuse very slowly due to their binding of the cell wall. Second, Tol actively captures mobilised Pal molecules and deposits them at the division septum. Third, the active capture mechanism is analogous to that used by the inner membrane protein TonB to dislodge the plug domains of outer membrane TonB-dependent nutrient transporters. We conclude that outer membrane constriction is coordinated with cell division by active mobilisation-and-capture of Pal at division septa by the Tol system.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Divisão Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana , Proteínas Periplásmicas/metabolismo
12.
FEBS J ; 287(15): 3255-3272, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31920006

RESUMO

The Golgi complex is a central component of the secretory pathway, responsible for several critical cellular functions in eukaryotes. The complex is organized by the Golgi matrix that includes the Golgi reassembly and stacking protein (GRASP), which was shown to be involved in cisternae stacking and lateral linkage in metazoan. GRASPs also have critical roles in other processes, with an unusual ability to interact with several different binding partners. The conserved N terminus of the GRASP family includes two PSD-95, DLG, and ZO-1 (PDZ) domains. Previous crystallographic studies of orthologues suggest that PDZ1 and PDZ2 have similar conformations and secondary structure content. However, PDZ1 alone mediates nearly all interactions between GRASPs and their partners. In this work, NMR, synchrotron radiation CD, and molecular dynamics (MD) were used to examine the structure, flexibility, and stability of the two constituent PDZ domains. GRASP PDZs are structured in an unusual ß3 α1 ß4 ß5 α2 ß6 ß1 ß2 secondary structural arrangement and NMR data indicate that the PDZ1 binding pocket is formed by a stable ß2 -strand and a more flexible and unstable α2 -helix, suggesting an explanation for the higher PDZ1 promiscuity. The conformational free energy profiles of the two PDZ domains were calculated using MD simulations. The data suggest that, after binding, the protein partner significantly reduces the conformational space that GRASPs can access by stabilizing one particular conformation, in a partner-dependent fashion. The structural flexibility of PDZ1, modulated by PDZ2, and the coupled, coordinated movement between the two PDZs enable GRASPs to interact with multiple partners, allowing them to function as promiscuous, multitasking proteins.


Assuntos
Proteínas da Matriz do Complexo de Golgi/química , Proteínas da Matriz do Complexo de Golgi/metabolismo , Domínios PDZ , Conformação Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Homologia de Sequência
13.
Proteins ; 88(1): 82-93, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294851

RESUMO

The X-ray structure of lysozyme from bacteriophage lambda (λ lysozyme) in complex with the inhibitor hexa-N-acetylchitohexaose (NAG6) (PDB: 3D3D) has been reported previously showing sugar units from two molecules of NAG6 bound in the active site. One NAG6 is bound with four sugar units in the ABCD sites and the other with two sugar units in the E'F' sites potentially representing the cleavage reaction products; each NAG6 cross links two neighboring λ lysozyme molecules. Here we use NMR and MD simulations to study the interaction of λ lysozyme with the inhibitors NAG4 and NAG6 in solution. This allows us to study the interactions within the complex prior to cleavage of the polysaccharide. 1 HN and 15 N chemical shifts of λ lysozyme resonances were followed during NAG4/NAG6 titrations. The chemical shift changes were similar in the two titrations, consistent with sugars binding to the cleft between the upper and lower domains; the NMR data show no evidence for simultaneous binding of a NAG6 to two λ lysozyme molecules. Six 150 ns MD simulations of λ lysozyme in complex with NAG4 or NAG6 were performed starting from different conformations. The simulations with both NAG4 and NAG6 show stable binding of sugars across the D/E active site providing low energy models for the enzyme-inhibitor complexes. The MD simulations identify different binding subsites for the 5th and 6th sugars consistent with the NMR data. The structural information gained from the NMR experiments and MD simulations have been used to model the enzyme-peptidoglycan complex.


Assuntos
Bacteriófago lambda/enzimologia , Muramidase/antagonistas & inibidores , Muramidase/metabolismo , Oligossacarídeos/metabolismo , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Domínio Catalítico/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Muramidase/química , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos
14.
J Magn Reson ; 307: 106573, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31505305

RESUMO

We describe the design and construction of a modular, triple-resonance, fully balanced, DNP-MAS probe based on transmission line technology and its integration into a 500 MHz/330 GHz DNP-NMR spectrometer. A novel quantitative probe design and characterization strategy is developed and employed to achieve optimal sensitivity, RF homogeneity and excellent isolation between channels. The resulting three channel HCN probe has a modular design with each individual, swappable module being equipped with connectorized, transmission line ports. This strategy permits attachment of a mating connector that facilitates accurate impedance measurements at these ports and allows characterization and adjustment (e.g. for balancing or tuning/matching) of each component individually. The RF performance of the probe is excellent; for example, the 13C channel attains a Rabi frequency of 280 kHz for a 3.2 mm rotor. In addition, a frequency tunable 330 GHz gyrotron operating at the second harmonic of the electron cyclotron frequency was developed for DNP applications. Careful alignment of the corrugated waveguide led to minimal loss of the microwave power, and an enhancement factor ε = 180 was achieved for U-13C urea in the glassy matrix at 80 K. We demonstrated the operation of the system with acquisition of multidimensional spectra of cross-linked lysozyme crystals which are insoluble in glycerol-water mixtures used for DNP and samples of RNA.


Assuntos
Ressonância Magnética Nuclear Biomolecular/instrumentação , Ciclotrons , Impedância Elétrica , Desenho de Equipamento , Indicadores e Reagentes , Micro-Ondas , Muramidase/química , RNA/química , Ureia/química
15.
Biomol NMR Assign ; 13(2): 261-265, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30919308

RESUMO

SMARCAD1 is a non-canonical chromatin remodelling ATPase, unique in its domain organization in that is encodes tandem ubiquitin binding CUE domains along with a classical SNF2 helicase ATP-dependent motor. SMARCAD1 is conserved from yeast to humans and has reported roles in the maintenance of heterochromatin following replication and in double-strand break repair. Here we present the 1H, 13C and 15N assignments for the tandem CUE domains and for the disordered regions that flank them. These assignments provide the starting point for detailed investigations of the structure and interactions of this region of SMARCAD1.


Assuntos
DNA Helicases/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Domínios Proteicos
16.
J Biol Chem ; 293(43): 16778-16790, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206118

RESUMO

Cytochromes c are ubiquitous proteins, essential for life in most organisms. Their distinctive characteristic is the covalent attachment of heme to their polypeptide chain. This post-translational modification is performed by a dedicated protein system, which in many Gram-negative bacteria and plant mitochondria is a nine-protein apparatus (CcmA-I) called System I. Despite decades of study, mechanistic understanding of the protein-protein interactions in this highly complex maturation machinery is still lacking. Here, we focused on the interaction of CcmC, the protein that sources the heme cofactor, with CcmE, the pivotal component of System I responsible for the transfer of the heme to the apocytochrome. Using in silico analyses, we identified a putative interaction site between these two proteins (residues Asp47, Gln50, and Arg55 on CcmC; Arg73, Asp101, and Glu105 on CcmE), and we validated our findings by in vivo experiments in Escherichia coli Moreover, employing NMR spectroscopy, we examined whether a heme-binding site on CcmE contributes to this interaction and found that CcmC and CcmE associate via protein-protein rather than protein-heme contacts. The combination of in vivo site-directed mutagenesis studies and high-resolution structural techniques enabled us to determine at the residue level the mechanism for the formation of one of the key protein complexes for cytochrome c maturation by System I.


Assuntos
Apoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Citocromos c/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Proteínas de Membrana/metabolismo , Substituição de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Cristalografia por Raios X , Citocromos c/química , Citocromos c/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Heme/química , Heme/genética , Hemeproteínas/química , Hemeproteínas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
17.
Adv Exp Med Biol ; 1066: 33-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30030820

RESUMO

Pioneering cell aggregation experiments from the Artavanis-Tsakonas group in the late 1980's localized the core ligand recognition sequence in the Drosophila Notch receptor to epidermal growth factor-like (EGF) domains 11 and 12. Since then, advances in protein expression, structure determination methods and functional assays have enabled us to define the molecular basis of the core receptor/ligand interaction and given new insights into the architecture of the Notch complex at the cell surface. We now know that Notch EGF11 and 12 interact with the Delta/Serrate/LAG-2 (DSL) and C2 domains of ligand and that membrane-binding, together with additional protein-protein interactions outside the core recognition domains, are likely to fine-tune generation of the Notch signal. Furthermore, structure determination of O-glycosylated variants of Notch alone or in complex with receptor fragments, has shown that these sugars contribute directly to the binding interface, as well as to stabilizing intra-molecular domain structure, providing some mechanistic insights into the observed modulatory effects of O-glycosylation on Notch activity.Future challenges lie in determining the complete extracellular architecture of ligand and receptor in order to understand (i) how Notch/ligand complexes may form at the cell surface in response to physiological cues, (ii) the role of lipid binding in stabilizing the Notch/ligand complex, (iii) the impact of O-glycosylation on binding and signalling and (iv) to dissect the different pathologies that arise as a consequence of mutations that affect proteins involved in the Notch pathway.


Assuntos
Proteínas de Drosophila , Receptores Notch , Transdução de Sinais/fisiologia , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Glicosilação , Ligantes , Domínios Proteicos , Receptores Notch/química , Receptores Notch/genética , Receptores Notch/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(45): 12051-12056, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078392

RESUMO

Unlike their descendants, mitochondria and plastids, bacteria do not have dedicated protein import systems. However, paradoxically, import of protein bacteriocins, the mechanisms of which are poorly understood, underpins competition among pathogenic and commensal bacteria alike. Here, using X-ray crystallography, isothermal titration calorimetry, confocal fluorescence microscopy, and in vivo photoactivatable cross-linking of stalled translocation intermediates, we demonstrate how the iron transporter FpvAI in the opportunistic pathogen Pseudomonas aeruginosa is hijacked to translocate the bacteriocin pyocin S2 (pyoS2) across the outer membrane (OM). FpvAI is a TonB-dependent transporter (TBDT) that actively imports the small siderophore ferripyoverdine (Fe-Pvd) by coupling to the proton motive force (PMF) via the inner membrane (IM) protein TonB1. The crystal structure of the N-terminal domain of pyoS2 (pyoS2NTD) bound to FpvAI (Kd = 240 pM) reveals that the pyocin mimics Fe-Pvd, inducing the same conformational changes in the receptor. Mimicry leads to fluorescently labeled pyoS2NTD being imported into FpvAI-expressing P. aeruginosa cells by a process analogous to that used by bona fide TBDT ligands. PyoS2NTD induces unfolding by TonB1 of a force-labile portion of the plug domain that normally occludes the central channel of FpvAI. The pyocin is then dragged through this narrow channel following delivery of its own TonB1-binding epitope to the periplasm. Hence, energized nutrient transporters in bacteria also serve as rudimentary protein import systems, which, in the case of FpvAI, results in a protein antibiotic 60-fold bigger than the transporter's natural substrate being translocated across the OM.


Assuntos
Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico/fisiologia , Ferro/metabolismo , Bacteriocinas/metabolismo , Cristalografia por Raios X/métodos , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Transporte Proteico/fisiologia , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
19.
Structure ; 25(8): 1208-1221.e5, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28669633

RESUMO

Fibrillin-1 (FBN1) mutations associated with Marfan syndrome lead to an increase in transforming growth factor ß (TGF-ß) activation in connective tissues resulting in pathogenic changes including aortic dilatation and dissection. Since FBN1 binds latent TGF-ß binding proteins (LTBPs), the major reservoir of TGF-ß in the extracellular matrix (ECM), we investigated the structural basis for the FBN1/LTBP1 interaction. We present the structure of a four-domain FBN1 fragment, EGF2-EGF3-Hyb1-cbEGF1 (FBN1E2cbEGF1), which reveals a near-linear domain organization. Binding studies demonstrate a bipartite interaction between a C-terminal LTBP1 fragment and FBN1E2cbEGF1, which lies adjacent to the latency-associated propeptide (LAP)/TGF-ß binding site of LTBP1. Modeling of the binding interface suggests that, rather than interacting along the longitudinal axis, LTBP1 anchors itself to FBN1 using two independent epitopes. As part of this mechanism, a flexible pivot adjacent to the FBN1/LTBP1 binding site allows LTBP1 to make contacts with different ECM networks while presumably facilitating a force-induced/traction-based TGF-ß activation mechanism.


Assuntos
Fibrilina-1/química , Proteínas de Ligação a TGF-beta Latente/química , Sítios de Ligação , Fibrilina-1/metabolismo , Humanos , Proteínas de Ligação a TGF-beta Latente/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica
20.
Biomol NMR Assign ; 10(2): 373-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27468962

RESUMO

Rhodobacter sphaeroides has emerged as a model system for studies of the complex chemotaxis pathways that are a hallmark of many non-enteric bacteria. The genome of R. sphaeroides encodes two sets of flagellar genes, fla1 and fla2, that are controlled by three different operons. Each operon encodes homologues of most of the proteins required for the well-studied E. coli chemotaxis pathway. R. sphaeroides has six homologues of the response regulator CheY that are localized to and are regulated by different clusters of chemosensory proteins in the cell and have different effects on chemotaxis. CheY6 is the major CheY stopping the fla1 flagellar motor and associated with a cytoplasmically localised chemosensory pathway. CheY3 and CheY4 are associated with a membrane localised polar chemosensory cluster, and can bind to but not stop the motor. CheY6 and either CheY3 or CheY4 are required for chemotaxis. We are using NMR spectroscopy to characterise and compare the structure and dynamics of CheY3 and CheY6 in solution. We are interested in defining the conformational changes that occur upon activation of these two proteins and to identify differences in their properties that can explain the different functions they play in chemotaxis in R. sphaeroides. Here we present the (1)H, (13)C and (15)N assignments for CheY3 in its active, inactive and Mg(2+)-free apo form. These assignments provide the starting point for detailed investigations of the structure and function of CheY3.


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular , Rhodobacter sphaeroides , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Magnésio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...