Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngoscope Investig Otolaryngol ; 9(3): e1291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855775

RESUMO

Objective: Studies evaluating genetic sensorineural hearing loss (SNHL) in Hispanic and Latino populations using genomic technologies are lacking. Recent data has shown that Hispanic and Latino children display lower genetic diagnostic rates despite similar prevalence rates of SNHL to their Asian and White counterparts, thus negatively affecting their clinical care. Our objective was to determine the genetic contribution to SNHL in a population of Mexican children undergoing evaluation for cochlear implantation. Methods: Pediatric patients from Mexico with severe to profound SNHL undergoing evaluation for cochlear implantation were recruited. Exome sequencing (ES) or hearing loss gene panel testing was performed. Variant pathogenicity was established in accordance to criteria established by the American College of Medical Genetics, and variants of interest were clinically confirmed via CLIA certified laboratory. Results: Genetic evaluation was completed for 30 Mexican children with severe to profound SNHL. A genetic cause was identified for 47% (14) of probands, and 7% (2) probands had an inconclusive result. Of the diagnoses, 10 (71%) were syndromic or likely syndromic, and 4 (29%) were nonsyndromic. Eight probands (80% of all syndromic diagnoses) were diagnosed with a syndromic form of hearing loss that mimics a nonsyndromic clinical presentation at a young age and so could not be suspected based on clinical evaluation alone without genetic testing. Conclusion: This is the largest study to date to use comprehensive genomic testing for the evaluation of Mexican children with severe to profound SNHL. A significant proportion of children in this cohort were diagnosed with syndromic hearing loss. Future study in a larger cohort of Mexican children with varying degrees of hearing loss is required to improve the efficacy of genetic testing and timely medical intervention within these ethnically diverse populations. Level of evidence: Level 4 (cohort study).

2.
Hum Genet ; 143(5): 721-734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691166

RESUMO

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Assuntos
Estudos de Associação Genética , Perda Auditiva , Proteínas de Membrana , Serina Endopeptidases , Humanos , Feminino , Masculino , Serina Endopeptidases/genética , Adulto , Proteínas de Membrana/genética , Perda Auditiva/genética , Criança , Pessoa de Meia-Idade , Adolescente , Pré-Escolar , Genótipo , Estudos de Coortes , Fenótipo , Mutação de Sentido Incorreto , Estudos Transversais , Adulto Jovem , Estudos Retrospectivos , Idoso , Proteínas de Neoplasias
3.
Hum Genet ; 143(3): 311-329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459354

RESUMO

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.


Assuntos
Surdez , Mutação de Sentido Incorreto , Linhagem , Receptores de Superfície Celular , Estereocílios , Animais , Feminino , Humanos , Masculino , Surdez/genética , Sequenciamento do Exoma , Genes Recessivos , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Modelos Moleculares , Receptores de Superfície Celular/genética , Estereocílios/metabolismo , Estereocílios/patologia , Estereocílios/genética
4.
medRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873491

RESUMO

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modelling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modelling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.

5.
Dev Cell ; 58(12): 1037-1051.e4, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37119815

RESUMO

The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.


Assuntos
Nicho de Células-Tronco , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Endoteliais/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Regulação da Expressão Gênica
6.
Laryngoscope ; 133(10): 2786-2791, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762450

RESUMO

OBJECTIVES: Enlarged vestibular aqueduct (EVA) is the most common anatomic abnormality contributing to permanent hearing loss (HL) in children. Although the association between EVA and HL is well-documented, the pass rate for the newborn hearing screening (NBHS) for patients with EVA-related HL is not. Our objective was to investigate the association between NBHS results and audiologic and clinical outcomes in a large cohort of pediatric patients with EVA. METHODS: This was a retrospective chart review of patients seen in the Boston Children's Hospital (BCH) Department of Otolaryngology and Communication Enhancement with confirmed HL, known NBHS results, and confirmed EVA. Demographic, clinical, audiologic, and imaging data were collected from the medical record. Frequency-specific data points from pure-tone audiograms and/or automated auditory brainstem response tests were recorded, and four-frequency pure tone average was calculated using air conduction thresholds at 500, 1000, 2000, and 4000 Hz. RESULTS: Of the 183 patients included in the study, 84 (45.9%) passed their NBHS, whereas 99 (54.1%) did not pass. Compared with patients who did not pass, patients who passed were more likely to have unilateral EVA and unilateral HL, whereas they were less likely to undergo cochlear implantation and to have causative SLC26A4 variants. CONCLUSIONS: EVA-associated HL may be identified at birth or during childhood, with nearly half the patients in this cohort passing their NBHS. Our results provide prognostic information for patients with EVA who pass their NBHS and highlight the importance of regular hearing monitoring for children not initially suspected of having HL. LEVEL OF EVIDENCE: 4 Laryngoscope, 133:2786-2791, 2023.


Assuntos
Perda Auditiva Neurossensorial , Aqueduto Vestibular , Recém-Nascido , Criança , Humanos , Estudos Retrospectivos , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/complicações , Audição , Aqueduto Vestibular/diagnóstico por imagem , Audiometria de Tons Puros
7.
Laryngoscope ; 133(9): 2417-2424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36515421

RESUMO

OBJECTIVES: Genetic testing is the standard-of-care for diagnostic evaluation of bilateral, symmetric, sensorineural hearing loss (HL). We sought to determine the efficacy of a comprehensive genetic testing method, exome sequencing (ES), in a heterogeneous pediatric patient population with bilateral symmetric, bilateral asymmetric, and unilateral HL. METHODS: Trio-based ES was performed for pediatric patients with confirmed HL including those with symmetric, asymmetric, and unilateral HL. RESULTS: ES was completed for 218 probands. A genetic cause was identified for 31.2% of probands (n = 68). The diagnostic rate was 40.7% for bilateral HL, 23.1% for asymmetric HL, and 18.3% for unilateral HL, with syndromic diagnoses made in 20.8%, 33.3%, and 54.5% of cases in each group, respectively. Secondary or incidental findings were identified in 10 families (5.52%). CONCLUSION: ES is an effective method for genetic diagnosis for HL including phenotypically diverse patients and allows the identification of secondary findings, discovery of deafness-causing genes, and the potential for efficient data re-analysis. LEVEL OF EVIDENCE: 4 Laryngoscope, 133:2417-2424, 2023.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Unilateral , Perda Auditiva , Humanos , Criança , Sequenciamento do Exoma , Perda Auditiva/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Testes Genéticos , Perda Auditiva Bilateral , Mutação , Linhagem
8.
Proc Natl Acad Sci U S A ; 115(37): 9252-9257, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30139917

RESUMO

Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based ß-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure-activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hematopoese/efeitos dos fármacos , Oxilipinas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Hematopoese/genética , Camundongos , Camundongos Knockout , Oxilipinas/química , Oxilipinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...