Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102702

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.


Assuntos
Síndrome de Down , Camundongos , Humanos , Animais , Síndrome de Down/genética , Crânio , Mapeamento Cromossômico , Fenótipo , Modelos Animais de Doenças
2.
J Anat ; 243(1): 51-65, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36914558

RESUMO

CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital anomalies and Ear abnormalities) syndrome is a disorder caused by mutations in the gene encoding CHD7, an ATP dependent chromatin remodelling factor, and is characterised by a diverse array of congenital anomalies. These include a range of neuroanatomical comorbidities which likely underlie the varied neurodevelopmental disorders associated with CHARGE syndrome, which include intellectual disability, motor coordination deficits, executive dysfunction, and autism spectrum disorder. Cranial imaging studies are challenging in CHARGE syndrome patients, but high-throughput magnetic resonance imaging (MRI) techniques in mouse models allow for the unbiased identification of neuroanatomical defects. Here, we present a comprehensive neuroanatomical survey of a Chd7 haploinsufficient mouse model of CHARGE syndrome. Our study uncovered widespread brain hypoplasia and reductions in white matter volume across the brain. The severity of hypoplasia appeared more pronounced in posterior areas of the neocortex compared to anterior regions. We also perform the first assessment of white matter tract integrity in this model through diffusion tensor imaging (DTI) to assess the potential functional consequences of widespread reductions in myelin, which suggested the presence of white matter integrity defects. To determine if white matter alterations correspond to cellular changes, we quantified oligodendrocyte lineage cells in the postnatal corpus callosum, uncovering reduced numbers of mature oligodendrocytes. Together, these results present a range of promising avenues of focus for future cranial imaging studies in CHARGE syndrome patients.


Assuntos
Transtorno do Espectro Autista , Síndrome CHARGE , Coloboma , Substância Branca , Camundongos , Animais , Síndrome CHARGE/genética , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Transtorno do Espectro Autista/diagnóstico por imagem , Coloboma/genética
3.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648332

RESUMO

The interplay among different cells in a tissue is essential for maintaining homeostasis. Although disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.


Assuntos
Perfilação da Expressão Gênica , Interleucina-8 , Transcriptoma , Humanos , Quimiocina CXCL10/genética , Fibroblastos , Linfócitos , Interleucina-8/metabolismo
4.
Elife ; 112022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193890

RESUMO

Telocytes (TCs) or interstitial cells are characterised in vivo by their long projections that contact other cell types. Although telocytes can be found in many different tissues including the heart, lung, and intestine, their tissue-specific roles are poorly understood. Here we identify a specific cell signalling role for telocytes in the periodontium whereby telocytes regulate macrophage activity. We performed scRNA-seq and lineage tracing to identify telocytes and macrophages in mouse periodontium in homeostasis and periodontitis and carried out hepatocyte growth factor (HGF) signalling inhibition experiments using tivantinib. We show that telocytes are quiescent in homeostasis; however, they proliferate and serve as a major source of HGF in periodontitis. Macrophages receive telocyte-derived HGF signals and shift from an M1 to an M1/M2 state. Our results reveal the source of HGF signals in periodontal tissue and provide new insights into the function of telocytes in regulating macrophage behaviour in periodontitis through HGF/Met cell signalling, which may provide a novel approach in periodontitis treatment.


Assuntos
Células Intersticiais de Cajal , Periodontite , Telócitos , Animais , Fator de Crescimento de Hepatócito/metabolismo , Macrófagos , Camundongos , Periodontite/metabolismo , Telócitos/metabolismo
5.
Nat Commun ; 13(1): 134, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013307

RESUMO

Combined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Homocistinúria/genética , Fator C1 de Célula Hospedeira/genética , Oxirredutases/genética , Proteínas Repressoras/genética , Ribossomos/genética , Deficiência de Vitamina B 12/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Homocistinúria/metabolismo , Homocistinúria/patologia , Fator C1 de Célula Hospedeira/deficiência , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Biogênese de Organelas , Oxirredutases/deficiência , Biossíntese de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/deficiência , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/patologia
6.
Brain Commun ; 3(2): fcab114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136812

RESUMO

Amyotrophic lateral sclerosis and frontotemporal dementia are overlapping diseases in which MRI reveals brain structural changes in advance of symptom onset. Recapitulating these changes in preclinical models would help to improve our understanding of the molecular causes underlying regionally selective brain atrophy in early disease. We therefore investigated the translational potential of the TDP-43Q331K knock-in mouse model of amyotrophic lateral sclerosis-frontotemporal dementia using MRI. We performed in vivo MRI of TDP-43Q331K knock-in mice. Regions of significant volume change were chosen for post-mortem brain tissue analyses. Ex vivo computed tomography was performed to investigate skull shape. Parvalbumin neuron density was quantified in post-mortem amyotrophic lateral sclerosis frontal cortex. Adult mutants demonstrated parenchymal volume reductions affecting the frontal lobe and entorhinal cortex in a manner reminiscent of amyotrophic lateral sclerosis-frontotemporal dementia. Subcortical, cerebellar and brain stem regions were also affected in line with observations in pre-symptomatic carriers of mutations in C9orf72, the commonest genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Volume loss was also observed in the dentate gyrus of the hippocampus, along with ventricular enlargement. Immunohistochemistry revealed reduced parvalbumin interneurons as a potential cellular correlate of MRI changes in mutant mice. By contrast, microglia was in a disease activated state even in the absence of brain volume loss. A reduction in immature neurons was found in the dentate gyrus, indicative of impaired adult neurogenesis, while a paucity of parvalbumin interneurons in P14 mutant mice suggests that TDP-43Q331K disrupts neurodevelopment. Computerized tomography imaging showed altered skull morphology in mutants, further suggesting a role for TDP-43Q331K in development. Finally, analysis of human post-mortem brains confirmed a paucity of parvalbumin interneurons in the prefrontal cortex in sporadic amyotrophic lateral sclerosis and amyotrophic lateral sclerosis linked to C9orf72 mutations. Regional brain MRI changes seen in human amyotrophic lateral sclerosis-frontotemporal dementia are recapitulated in TDP-43Q331K knock-in mice. By marrying in vivo imaging with targeted histology, we can unravel cellular and molecular processes underlying selective brain vulnerability in human disease. As well as helping to understand the earliest causes of disease, our MRI and histological markers will be valuable in assessing the efficacy of putative therapeutics in TDP-43Q331K knock-in mice.

7.
Development ; 148(18)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712441

RESUMO

Characterising phenotypes often requires quantification of anatomical shape. Quantitative shape comparison (morphometrics) traditionally uses manually located landmarks and is limited by landmark number and operator accuracy. Here, we apply a landmark-free method to characterise the craniofacial skeletal phenotype of the Dp1Tyb mouse model of Down syndrome and a population of the Diversity Outbred (DO) mouse model, comparing it with a landmark-based approach. We identified cranial dysmorphologies in Dp1Tyb mice, especially smaller size and brachycephaly (front-back shortening), homologous to the human phenotype. Shape variation in the DO mice was partly attributable to allometry (size-dependent shape variation) and sexual dimorphism. The landmark-free method performed as well as, or better than, the landmark-based method but was less labour-intensive, required less user training and, uniquely, enabled fine mapping of local differences as planar expansion or shrinkage. Its higher resolution pinpointed reductions in interior mid-snout structures and occipital bones in both the models that were not otherwise apparent. We propose that this landmark-free pipeline could make morphometrics widely accessible beyond its traditional niches in zoology and palaeontology, especially in characterising developmental mutant phenotypes.


Assuntos
Pontos de Referência Anatômicos/fisiopatologia , Síndrome de Down/fisiopatologia , Imageamento Tridimensional/métodos , Animais , Pesos e Medidas Corporais/métodos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Caracteres Sexuais , Crânio/fisiopatologia
8.
Brain ; 140(11): 2797-2805, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053787

RESUMO

Mutations in FUS are causative for amyotrophic lateral sclerosis with a dominant mode of inheritance. In trying to model FUS-amyotrophic lateral sclerosis (ALS) in mouse it is clear that FUS is dosage-sensitive and effects arise from overexpression per se in transgenic strains. Novel models are required that maintain physiological levels of FUS expression and that recapitulate the human disease-with progressive loss of motor neurons in heterozygous animals. Here, we describe a new humanized FUS-ALS mouse with a frameshift mutation, which fulfils both criteria: the FUS Delta14 mouse. Heterozygous animals express mutant humanized FUS protein at physiological levels and have adult onset progressive motor neuron loss and denervation of neuromuscular junctions. Additionally, we generated a novel antibody to the unique human frameshift peptide epitope, allowing specific identification of mutant FUS only. Using our new FUSDelta14 ALS mouse-antibody system we show that neurodegeneration occurs in the absence of FUS protein aggregation. FUS mislocalization increases as disease progresses, and mutant FUS accumulates at the rough endoplasmic reticulum. Further, transcriptomic analyses show progressive changes in ribosomal protein levels and mitochondrial function as early disease stages are initiated. Thus, our new physiological mouse model has provided novel insight into the early pathogenesis of FUS-ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Mutação da Fase de Leitura , Camundongos , Agregação Patológica de Proteínas/genética , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Retículo Endoplasmático Rugoso/metabolismo , Dosagem de Genes , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Heterozigoto , Humanos , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética
9.
Psychoneuroendocrinology ; 63: 198-207, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26460782

RESUMO

The beneficial effects of calorie restriction (CR) have been described at both organismal and cellular levels in multiple organs. However, our understanding of the causal mediators of such hormesis is poorly understood, particularly in the context of higher brain function. Here, we show that the receptor for the orexigenic hormone acyl-ghrelin, the growth hormone secretagogue receptor (Ghsr), is enriched in the neurogenic niche of the hippocampal dentate gyrus (DG). Acute elevation of acyl-ghrelin levels by injection or by overnight CR, increased DG levels of the neurogenic transcription factor, Egr-1. Two weeks of CR increased the subsequent number of mature newborn neurons in the DG of adult wild-type but not Ghsr(-/-) mice. CR wild-type mice also showed improved remote contextual fear memory. Our findings suggest that Ghsr mediates the beneficial effects of CR on enhancing adult hippocampal neurogenesis and memory.


Assuntos
Células-Tronco Adultas/fisiologia , Restrição Calórica , Medo/psicologia , Hipocampo/citologia , Rememoração Mental/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Receptores de Grelina/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...