Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1784, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413620

RESUMO

Poplar trees use photoperiod as a precise seasonal indicator, synchronizing plant phenology with the environment. Daylength cue determines FLOWERING LOCUS T 2 (FT2) daily expression, crucial for shoot apex development and establishment of the annual growing period. However, limited evidence exists for the molecular factors controlling FT2 transcription and the conservation with the photoperiodic control of Arabidopsis flowering. We demonstrate that FT2 expression mediates growth cessation response quantitatively, and we provide a minimal data-driven model linking core clock genes to FT2 daily levels. GIGANTEA (GI) emerges as a critical inducer of the FT2 activation window, time-bound by TIMING OF CAB EXPRESSION (TOC1) and LATE ELONGATED HYPOCOTYL (LHY2) repressions. CRISPR/Cas9 loss-of-function lines validate these roles, identifying TOC1 as a long-sought FT2 repressor. Additionally, model simulations predict that FT2 downregulation upon daylength shortening results from a progressive narrowing of this activation window, driven by the phase shift observed in the preceding clock genes. This circadian-mediated mechanism enables poplar to exploit FT2 levels as an accurate daylength-meter.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Populus , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Fotoperíodo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
2.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178121

RESUMO

Differentiation of stem cells in the plant apex gives rise to aerial tissues and organs. Presently, we lack a lineage map of the shoot apex cells in woody perennials - a crucial gap considering their role in determining primary and secondary growth. Here, we used single-nuclei RNA-sequencing to determine cell type-specific transcriptomes of the Populus vegetative shoot apex. We identified highly heterogeneous cell populations clustered into seven broad groups represented by 18 transcriptionally distinct cell clusters. Next, we established the developmental trajectories of the epidermis, leaf mesophyll and vascular tissue. Motivated by the high similarities between Populus and Arabidopsis cell population in the vegetative apex, we applied a pipeline for interspecific single-cell gene expression data integration. We contrasted the developmental trajectories of primary phloem and xylem formation in both species, establishing the first comparison of vascular development between a model annual herbaceous and a woody perennial plant species. Our results offer a valuable resource for investigating the principles underlying cell division and differentiation conserved between herbaceous and perennial species while also allowing us to examine species-specific differences at single-cell resolution.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Populus/genética , Populus/metabolismo , RNA/metabolismo , Transcriptoma/genética , Xilema/metabolismo
3.
Chemosphere ; 236: 124395, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545198

RESUMO

The detection of oxidative stress caused by emerging pollutants in aquatic systems is essential to carry out toxicological analysis since they can bring us information about the mechanisms of toxic action of the pollutants, which might be useful to address this contamination. To achieve this goal, two self-bioluminescent strains that respond to oxidative stress based on the filamentous cyanobacterium Nostoc sp. PCC7120, which has a high ecological relevance in aquatic continental systems, have been constructed. Nostoc sp. PCC7120 pBG2172 harbours the promoter region of the 2-cys-prx gene (P2-cys-prx), encoding a cytoplasmic peroxiredoxin, fused to luxCDABE genes of the bacterium Photorhabdus luminescens. Nostoc sp. PCC7120 pBG2173 harbours the promoter region of the KatA gene (PkatA), a cytoplasmic catalase, also fused to luxCDABE genes. Both strains have been characterized by exposing them to H2O2: Nostoc sp. PCC7120 pBG2172 responded while Nostoc sp. PCC7120 pBG2173 did not respond to this pollutant. In order to know their specificity, they were exposed to methyl viologen (MV), an herbicide that produces superoxide anion (O2-) and a bioluminescence response was observed in both strains. Besides, the utility of these strains for the detection of H2O2 and MV in natural water samples, both pristine and wastewater samples has been tested by spiking experiments. Finally, the possible application of these strains for the detection of the emerging pollutant triclosan has also been tested showing to be suitable bioreporters to study oxidative stress in aquatic environments.


Assuntos
Catalase/química , Cianobactérias/química , Hidrobiologia/normas , Peroxirredoxinas/química , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...