Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
2.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333255

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-beta (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel Anoctamin-1 (ANO1) in human lung fibroblasts (HLF) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle alpha-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1 and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate pro-fibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLF results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that (i) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and (ii) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein, but independent of WNK1 kinase activity.

3.
Respir Res ; 20(1): 168, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358001

RESUMO

BACKGROUND: Pulmonary fibrosis is a progressive disease characterized by structural distortion of the lungs. Transforming growth factor-beta (TGF-beta) is a key cytokine implicated in the pathogenesis of pulmonary fibrosis. TGF-beta-induced myofibroblast differentiation characterized by expression of smooth muscle alpha-actin and extracellular matrix proteins is a key process in pathogenesis of fibrotic disease. Tannic acid is a natural polyphenol with diverse applications. In this study, we investigated the effect of tannic acid on myofibroblast differentiation and pulmonary fibrosis in cultured cells and in bleomycin model of the disease. METHODS: Primary cultured human lung fibroblasts (HLF) were used. The relative levels of proteins were determined by Western blotting. HLF contraction was measured by traction microscopy. Bleomycin-induced pulmonary fibrosis in mice was used as the disease model. RESULTS: Tannic acid inhibited TGF-beta-induced expression of collagen-1 and smooth muscle alpha-actin (SMA) as well as force generation by HLF. Tannic acid did not affect initial phosphorylation of Smad2 in response to TGF-beta, but significantly inhibited sustained Smad2 phosphorylation, which we recently described to be critical for TGF-beta-induced myofibroblast differentiation. Accordingly, tannic acid inhibited Smad-dependent gene transcription in response to TGF-beta, as assessed using luciferase reporter for the activity of Smad-binding elements. Finally, in mouse model of bleomycin-induced pulmonary fibrosis, therapeutic application of tannic acid resulted in a significant reduction of lung fibrosis, decrease in collagen-1 content and of Smad2 phosphorylation in the lungs. CONCLUSIONS: This study demonstrates the anti-fibrotic effect of tannic acid in vitro and in vivo through a regulation of sustained Smad2 phosphorylation.


Assuntos
Antifibrinolíticos/farmacologia , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Taninos/farmacologia , Animais , Antifibrinolíticos/uso terapêutico , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Taninos/uso terapêutico
5.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L815-23, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26851261

RESUMO

Myofibroblast differentiation is a key process in pathogenesis of fibrotic diseases. Cardiac glycosides (ouabain, digoxin) inhibit Na(+)-K(+)-ATPase, resulting in increased intracellular [Na(+)]-to-[K(+)] ratio in cells. Microarray analysis suggested that increased intracellular [Na(+)]/[K(+)] ratio may promote the expression of cyclooxygenase-2 (COX-2), a critical enzyme in the synthesis of prostaglandins. Given antifibrotic effects of prostaglandins through activation of protein kinase A (PKA), we examined if cardiac glycosides stimulate COX-2 expression in human lung fibroblasts and how they affect myofibroblast differentiation. Ouabain stimulated a profound COX-2 expression and a sustained PKA activation, which was blocked by COX-2 inhibitor or by COX-2 knockdown. Ouabain-induced COX-2 expression and PKA activation were abolished by the inhibitor of the Na(+)/Ca(2+) exchanger, KB-R4943. Ouabain inhibited transforming growth factor-ß (TGF-ß)-induced Rho activation, stress fiber formation, serum response factor activation, and the expression of smooth muscle α-actin, collagen-1, and fibronectin. These effects were recapitulated by an increase in intracellular [Na(+)]/[K(+)] ratio through the treatment of cells with K(+)-free medium or with digoxin. Although inhibition of COX-2 or of the Na(+)/Ca(2+) exchanger blocked ouabain-induced PKA activation, this failed to reverse the inhibition of TGF-ß-induced Rho activation or myofibroblast differentiation by ouabain. Together, these data demonstrate that ouabain, through the increase in intracellular [Na(+)]/[K(+)] ratio, drives the induction of COX-2 expression and PKA activation, which is accompanied by a decreased Rho activation and myofibroblast differentiation in response to TGF-ß. However, COX-2 expression and PKA activation are not sufficient for inhibition of the fibrotic effects of TGF-ß by ouabain, suggesting that additional mechanisms must exist.


Assuntos
Glicosídeos Cardíacos/farmacologia , Diferenciação Celular , Digoxina/farmacologia , Miofibroblastos/fisiologia , Ouabaína/farmacologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática , Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Miofibroblastos/efeitos dos fármacos
6.
J Biol Chem ; 289(11): 7505-13, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24492608

RESUMO

Myofibroblast differentiation is a key process in the pathogenesis of fibrotic disease. We have shown previously that differentiation of myofibroblasts is regulated by microtubule polymerization state. In this work, we examined the potential antifibrotic effects of the antitussive drug, noscapine, recently found to bind microtubules and affect microtubule dynamics. Noscapine inhibited TGF-ß-induced differentiation of cultured human lung fibroblasts (HLFs). Therapeutic noscapine treatment resulted in a significant attenuation of pulmonary fibrosis in the bleomycin model of the disease. Noscapine did not affect gross microtubule content in HLFs, but inhibited TGF-ß-induced stress fiber formation and activation of serum response factor without affecting Smad signaling. Furthermore, noscapine stimulated a rapid and profound activation of protein kinase A (PKA), which mediated the antifibrotic effect of noscapine in HLFs, as assessed with the PKA inhibitor, PKI. In contrast, noscapine did not activate PKA in human bronchial or alveolar epithelial cells. Finally, activation of PKA and the antifibrotic effect of noscapine in HLFs were blocked by the EP2 prostaglandin E2 receptor antagonist, PF-04418948, but not by the antagonists of EP4, prostaglandin D2, or prostacyclin receptors. Together, we demonstrate for the first time the antifibrotic effect of noscapine in vitro and in vivo, and we describe a novel mechanism of noscapine action through EP2 prostaglandin E2 receptor-mediated activation of PKA in pulmonary fibroblasts.


Assuntos
Antitussígenos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Noscapina/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Receptores de Prostaglandina E/metabolismo , Animais , Antineoplásicos/farmacologia , Bleomicina/farmacologia , Linhagem Celular Tumoral , DNA/metabolismo , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica , Humanos , Hidroxiprolina/química , Luciferases/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Miofibroblastos/citologia , Neoplasias/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia
7.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L693-701, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24077945

RESUMO

T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3(ΔRGS)) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3(ΔRGS) mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3(ΔRGS) mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3(ΔRGS), demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3(ΔRGS) T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.


Assuntos
Movimento Celular , Inflamação/etiologia , Proteínas RGS/fisiologia , Mucosa Respiratória/imunologia , Linfócitos T/imunologia , Células Th2/imunologia , Animais , Apoptose , Western Blotting , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/patogenicidade , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Células Th2/metabolismo , Células Th2/patologia
8.
Am J Physiol Lung Cell Mol Physiol ; 304(11): L757-64, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23585227

RESUMO

Myofibroblast differentiation induced by transforming growth factor-ß (TGF-ß) is characterized by the expression of smooth muscle α-actin (SMA) and extracellular matrix proteins. We and others have previously shown that these changes are regulated by protein kinase A (PKA). Adrenomedullin (ADM) is a vasodilator peptide that activates cAMP/PKA signaling through the calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMP). In this study, we found that recombinant ADM had little effect on cAMP/PKA in quiescent human pulmonary fibroblasts, whereas it induced a profound activation of cAMP/PKA signaling in differentiated (by TGF-ß) myofibroblasts. In contrast, the prostacyclin agonist iloprost was equally effective at activating PKA in both quiescent fibroblasts and differentiated myofibroblasts. TGF-ß stimulated a profound expression of CRLR with a time course that mirrored the increased PKA responses to ADM. The TGF-ß receptor kinase inhibitor SB431542 abolished expression of CRLR and attenuated the PKA responses of cells to ADM but not to iloprost. CRLR expression was also dramatically increased in lungs from bleomycin-treated mice. Functionally, ADM did not affect initial differentiation of quiescent fibroblasts in response to TGF-ß but significantly attenuated the expression of SMA, collagen-1, and fibronectin in pre-differentiated myofibroblasts, which was accompanied by decreased contractility of myofibroblasts. Finally, sensitization of ADM signaling by transgenic overexpression of RAMP2 in myofibroblasts resulted in enhanced survival and reduced pulmonary fibrosis in the bleomycin model of the disease. In conclusion, differentiated pulmonary myofibroblasts gain responsiveness to ADM via increased CRLR expression, suggesting the possibility of using ADM for targeting pathological myofibroblasts without affecting normal fibroblasts.


Assuntos
Adrenomedulina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Miofibroblastos/citologia , Fibrose Pulmonar/fisiopatologia , Actinas/metabolismo , Adrenomedulina/uso terapêutico , Animais , Bleomicina , Proteína Semelhante a Receptor de Calcitonina/biossíntese , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Iloprosta/farmacologia , Camundongos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/fisiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Proteína 2 Modificadora da Atividade de Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...