Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712061

RESUMO

Primary microRNA (pri-miRNA) transcripts are processed by the Microprocessor, a protein complex that includes the ribonuclease Drosha and its RNA binding partner DGCR8/Pasha. We developed a live, whole animal, fluorescence-based sensor that reliably monitors pri-miRNA processing with high sensitivity in C. elegans. Through a forward genetic selection for alleles that desilence the sensor, we identified a mutation in the conserved G residue adjacent to the namesake W residue of Pasha's WW domain. Using genome editing we also mutated the W residue and reveal that both the G and W residue are required for dimerization of Pasha and proper assembly of the Microprocessor. Surprisingly, we find that the WW domain also facilitates nuclear localization of Pasha, which in turn promotes nuclear import or retention of Drosha. Furthermore, depletion of Pasha or Drosha causes both components of the Microprocessor to mislocalize to the cytoplasm. Thus, Pasha and Drosha mutually regulate each other's spatial expression in C. elegans.

2.
Cell Rep ; 37(10): 110101, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879267

RESUMO

Piwi-interacting RNAs (piRNAs) regulate many biological processes through mechanisms that are not fully understood. In Caenorhabditis elegans, piRNAs intersect the endogenous RNA interference (RNAi) pathway, involving a distinct class of small RNAs called 22G-RNAs, to regulate gene expression in the germline. In the absence of piRNAs, 22G-RNA production from many genes is reduced, pointing to a role for piRNAs in facilitating endogenous RNAi. Here, however, we show that many genes gain, rather than lose, 22G-RNAs in the absence of piRNAs, which is in some instances coincident with RNA silencing. Aberrant 22G-RNA production is somewhat stochastic but once established can occur within a population for at least 50 generations. Thus, piRNAs both promote and suppress 22G-RNA production and gene silencing. rRNAs and histones are hypersusceptible to aberrant silencing, but we do not find evidence that their misexpression is the primary cause of the transgenerational sterility observed in piRNA-defective mutants.


Assuntos
Proteínas Argonautas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Mutação , Interferência de RNA , RNA de Helmintos/genética , RNA Ribossômico/genética , RNA Interferente Pequeno/genética , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Histonas/genética , Histonas/metabolismo , Modelos Genéticos , RNA de Helmintos/metabolismo , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/metabolismo , Processos Estocásticos
3.
Sci Rep ; 11(1): 4332, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619300

RESUMO

As hindgut fermenters, horses are especially dependent on the microbiota residing in their cecum and large intestines. Interactions between these microbial populations and the horse are critical for maintaining gut homeostasis, which supports proper digestion. The current project was motivated to determine if any features of the fecal microbiota are informative of the microbial communities from the cecum, ventral colon, or dorsal colon. Digesta from the cecum, ventral colon, dorsal colon and feces were collected from 6 yearling miniature horses. Microbial DNA was isolated and the microbiota from each sample was characterized by profiling the V4 region of the 16S rRNA. Principal coordinate analysis of the beta diversity results revealed significant (p = 0.0001; F = 5.2393) similarities between the microbial populations from cecal and ventral colon and the dorsal colon and fecal samples, however, there was little overlap between the proximal and distal ends of the hindgut. These distinct population structures observed in our results coincide with the pelvic flexure, which itself separates intestinal compartments with distinct roles in digestive physiology. An indicator species analysis confirmed the population differences, supported by the identification of several microbial families characteristic of the compartments upstream of the pelvic flexure that were not represented following it. Our data suggest that the fecal microbiota is not informative of the proximal hindgut but can provide insight into communities of the distal compartments. Further, our results suggest that the pelvic flexure might be an important anatomical landmark relative to the microbial communities in the equine large intestine.


Assuntos
Microbioma Gastrointestinal , Cavalos , Intestino Grosso , Pelve/anatomia & histologia , Animais , Biodiversidade , Metagenoma , Metagenômica/métodos
5.
Nucleic Acids Res ; 48(4): 1811-1827, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31872227

RESUMO

Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) are distinct classes of small RNAs required for proper germline development. To identify the roles of piRNAs and siRNAs in regulating gene expression in Caenorhabditis elegans, we subjected small RNAs and mRNAs from the gonads of piRNA and siRNA defective mutants to high-throughput sequencing. We show that piRNAs and an abundant class of siRNAs known as WAGO-class 22G-RNAs are required for proper expression of spermatogenic and oogenic genes. WAGO-class 22G-RNAs are also broadly required for transposon silencing, whereas piRNAs are largely dispensable. piRNAs, however, have a critical role in controlling histone gene expression. In the absence of piRNAs, histone mRNAs are misrouted into the nuclear RNAi pathway involving the Argonaute HRDE-1, concurrent with a reduction in the expression of many histone mRNAs. We also show that high-level gene expression in the germline is correlated with high level 22G-RNA production. However, most highly expressed genes produce 22G-RNAs through a distinct pathway that presumably involves the Argonaute CSR-1. In contrast, genes targeted by the WAGO branch of the 22G-RNA pathway are typically poorly expressed and respond unpredictably to loss of 22G-RNAs. Our results point to broad roles for piRNAs and siRNAs in controlling gene expression in the C. elegans germline.


Assuntos
Proteínas Argonautas/genética , Proteínas de Caenorhabditis elegans/genética , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica , Células Germinativas/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Transcriptoma/genética
6.
Cell Rep ; 29(10): 3187-3199.e4, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801082

RESUMO

The germline contains an immortal cell lineage that ensures the faithful transmission of genetic and, in some instances, epigenetic information from one generation to the next. Here, we show that in Caenorhabditis elegans, the small RNA 3'-2'-O-methyltransferase henn-1/HEN1 is required for sustained fertility across generations. In the absence of henn-1, animals become progressively less fertile, becoming sterile after ∼30 generations at 25°C. Sterility in henn-1 mutants is accompanied by severe defects in germline proliferation and maintenance. The requirement for henn-1 in transgenerational fertility is likely due to its role in methylating and, thereby, stabilizing Piwi-interacting RNAs (piRNAs). However, despite being essential for piRNA stability in embryos, henn-1 is not required for piRNA stability in adults. Thus, we propose that methylation is important for the role of piRNAs in establishing proper gene silencing during early stages of development but is dispensable for their role in the proliferated germline.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Células Germinativas/fisiologia , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Animais , Proliferação de Células/genética , Inativação Gênica/fisiologia , Metilação , RNA Interferente Pequeno/genética
7.
Genes (Basel) ; 10(10)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635328

RESUMO

Maternal recognition of pregnancy (MRP) in the mare is not well defined. In a non-pregnant mare, prostaglandin F2α (PGF) is released on day 14 post-ovulation (PO) to cause luteal regression, resulting in loss of progesterone production. Equine MRP occurs prior to day 14 to halt PGF production. Studies have failed to identify a gene candidate for MRP, so attention has turned to small, non-coding RNAs. The objective of this study was to evaluate small RNA (<200 nucleotides) content in endometrium during MRP. Mares were used in a cross-over design with each having a pregnant and non-mated cycle. Each mare was randomly assigned to collection day 11 or 13 PO (n = 3/day) and endometrial biopsies were obtained. Total RNA was isolated and sequencing libraries were prepared using a small RNA library preparation kit and sequenced on a HiSeq 2000. EquCab3 was used as the reference genome and DESeq2 was used for statistical analysis. On day 11, 419 ncRNAs, representing miRNA, snRNA, snoRNA, scaRNA, and vaultRNA, were different between pregnancy statuses, but none on day 13. Equine endometrial ncRNAs with unknown structure and function were also identified. This study is the first to describe ncRNA transcriptome in equine endometrium. Identifying targets of these ncRNAs could lead to determining MRP.


Assuntos
Endométrio/metabolismo , Cavalos/genética , Prenhez/genética , RNA não Traduzido/genética , Animais , Feminino , Cavalos/metabolismo , Cavalos/fisiologia , Gravidez , Prenhez/metabolismo , Prenhez/fisiologia , RNA não Traduzido/metabolismo , Transcriptoma
8.
RNA Biol ; 16(11): 1526-1530, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31397621

RESUMO

Worm biologists from the United States, Canada, and the United Kingdom gathered at the Colorado State University Todos Santos Center in Baja California Sur, Mexico, April 3-5, 2019 for the Todos Santos Small RNA Symposium. Meeting participants, many of whom were still recovering from the bomb cyclone that struck a large swath of North America just days earlier, were greeted by the warmth and sunshine that is nearly ubiquitous in the sleepy seaside town of Todos Santos. With only 24 speakers, the meeting had the sort of laid-back vibe you might expect amongst the palm trees and ocean breeze of the Pacific coast of Mexico. The meeting started with tracing the laboratory lineages of participants. Not surprisingly, the most common parental lineages represented at the meeting were Dr. Craig Mello, Dr. Gary Ruvkun, and Dr. Victor Ambros, whom, together with Dr. Andy Fire and Dr. David Baulcombe, pioneered the small RNA field. In sad irony, on the closing day of the meeting, participants were met with the news of Dr. Sydney Brenner's passing. By establishing the worm, Caenorhabditis elegans, as a model system Dr. Brenner paved the way for much of the research discussed here.


Assuntos
Caenorhabditis elegans/genética , Pequeno RNA não Traduzido/genética , Animais , Canadá , Regulação da Expressão Gênica , Inativação Gênica , RNA de Helmintos/genética , Reino Unido , Estados Unidos
9.
J Equine Vet Sci ; 77: 98-106, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133326

RESUMO

The gastrointestinal microbiota (GIM) plays an essential role in maintaining intestinal homeostasis with disruptions having profound effects on the wellbeing of the host animal. Parasitic infection is a long-standing issue for the equine industry, and the use of anthelmintic drugs for parasite control has long been standard practice. The impact of anthelmintic treatment on the GIM in healthy horses is not well known. This study evaluated the hypothesis that anthelmintic administration will alter the equine fecal microbiota in horses without an observed helminth infection. Ten horses were treated with a single dose of QUEST PLUS (active ingredients: Moxidectin and Praziquantel) (Zoetis), and fecal samples were collected before and after treatment. Amplicon sequencing data were quality filtered, processed, and analyzed using QIIME2. Anthelmintic treatment corresponded with a small but significant decrease in alpha diversity (P-value < .05). Analysis of taxonomic abundances before and after treatment with DESeq2 identified 21 features that were significantly different after treatment (Padj-value < .05). Differences in beta diversity associated with treatment were not significant and potentially suggest factors unique to the individual may play an essential role in the specific responses observed. Overall, the present study does not indicate a broad, large-scale impact on the GIM after anthelmintic treatment. The results do, however, suggest the potential of individualized responses that are based instead on host factors. Identification of these factors and investigation of their impact on the host/microbiota relationship will contribute significantly to our understanding of the role of the microbiome in horse health.


Assuntos
Anti-Helmínticos/uso terapêutico , Microbioma Gastrointestinal , Doenças dos Cavalos/tratamento farmacológico , Microbiota , Animais , Fezes , Cavalos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA