Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166367, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633376

RESUMO

The Delaware Basin in west Texas and southeast New Mexico is now the largest global oil producing basin, averaging ∼400,000 m3 (∼2,500,000 barrels) per day in 2022. The shale-dominated strata targeted for production can co-produce 4-5 times more water than oil, necessitating disposal by injection of ∼1,400,000 m3 (∼8,700,000 barrels) of water per day in 2022. Through a comprehensive assimilation of regional Sentinel-1 satellite radar data and analysis of production and injection, we show how petroleum operations have caused the development of complex and accelerating patterns of surface deformation from 2015 through 2021. We observe uplift from reservoir swelling, subsidence from reservoir contraction, and the development of linear features that are indicative of faulting. Subsidence is predominantly caused by production, and an important finding of this study is that the magnitude of subsidence is linearly proportional to total production. Uplift is caused by pressurization from wastewater injection of shallow permeable strata. The patterns of uplift are complex and extend laterally well-beyond areas where injection was performed. Linear surface deformation features are observed throughout the Delaware Basin, and they are lengthening and densifying as uplift and subsidence accelerate. Many of the lineations can be linked to known strata-bounded faults and shallow seismicity in the southern Delaware Basin where they serve as permeable and anisotropic conduits for pore pressure migration. In the Northern Delaware Basin, co-seismic rupture is hosted along basement-rooted faults that may link to the linear surface features. Understanding these dynamic changes in Delaware Basin is a pressing concern for management of subsurface reservoirs and safeguarding the surface environment. Concerns include ongoing induced seismicity, hazard of drilling through over-pressured strata, maintenance of integrity for newer wellbores, mitigation of flows of brine and petroleum fluids at the surface of old wellbores, and management of the pore space resource for wastewater injection.

2.
Environ Sci Technol ; 56(18): 12965-12974, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044676

RESUMO

Approximately 10% of community water systems in the United States experience a health-based violation of drinking water quality; however, recently allocated funds for improving United States water infrastructure ($50 billion) provide an opportunity to address these issues. The objective of this study was to examine environmental, operational, and sociodemographic drivers of spatiotemporal variability in drinking water quality violations using geospatial analysis and data analytics. Random forest modeling was used to evaluate drivers of these violations, including environmental (e.g., landcover, climate, geology), operational (e.g., water source, system size), and sociodemographic (social vulnerability, rurality) drivers. Results of random forest modeling show that drivers of violations vary by violation type. For example, arsenic and radionuclide violations are found mostly in the Southwest and Southcentral United States related to semiarid climate, whereas disinfection byproduct rule violations are found primarily in Southcentral United States related to system operations. Health-based violations are found primarily in small systems in rural and suburban settings. Understanding the drivers of water quality violations can help develop optimal approaches for addressing these issues to increase compliance in community water systems, particularly small systems in rural areas across the United States.


Assuntos
Arsênio , Água Potável , Humanos , População Rural , Estados Unidos , Qualidade da Água
3.
Sci Total Environ ; 811: 152306, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34906580

RESUMO

Quantifying impacts of unconventional oil and gas production on water resources and aquatic habitats is critical for developing management approaches for mitigation. The study objective was to evaluate impacts of oil and gas production on groundwater and surface water and assess approaches to reduce these impacts using the Permian Basin as a case study. Water demand for hydraulic fracturing (HF) was compared to water supplies. We also examined contamination from surface spills. Results show that water demand for HF peaked in 2019, representing ~35% of water use in non-mining sectors. Most HF water was sourced from aquifers with ~1,100 wells drilled in the Ogallala aquifer in 2019. The State monitoring network did not show regional groundwater depletion but was not sufficiently dense to address local impacts. Groundwater depletion is more critical in the western Delaware Basin within the Permian Basin because groundwater is connected to large flowing springs (e.g. San Solomon Springs) and to the Pecos River which has total dissolved solids ranging from ~3000 to 14,000 mg/L. Most produced water (70-80%) is disposed in shallow geologic units that could result in overpressuring and potential groundwater contamination from leakage through ~70,000 abandoned oil wells, including orphaned wells. While there is little evidence of leakage from abandoned wells, the state monitoring system was not designed to assess leakage from these wells. Oil spill counts totaled ~11,000 in the Permian (2009-2018). Approaches to mitigating adverse impacts on water management include reuse of PW for HF; however, there is an excess of PW in the Delaware Basin. Treatment and reuse in other sectors outside of oil and gas are also possibilities. Data gaps include reporting of water sources for HF, PW quality data required for assessing treatment and reuse, subsurface disposal capacity for accommodating PW, and spills from PW in Texas.


Assuntos
Água Subterrânea , Fraturamento Hidráulico , Poluentes Químicos da Água , Gás Natural , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Poços de Água
4.
Sci Total Environ ; 717: 137085, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209263

RESUMO

There is increasing interest in beneficial uses of large volumes of wastewater co-produced with oil and gas extraction (produced water, PW) because of water scarcity, potential subsurface disposal limitations, and regional linkages to induced seismicity. Here we quantified PW volumes relative to water demand in different sectors and PW quality relative to treatment and reuse options for the major U.S. shale oil and gas plays. PW volumes from these plays totaled ~600 billion liters (BL, 160 billion gallons, Bgal) in 2017. One year of PW is equal to ~60% of one day of freshwater use in the U.S. For these plays, the total irrigation demand exceeded PW volumes by ~5× whereas municipal demand exceeded PW by ~2×. If PW is reused for hydraulic fracturing (HF) within the energy sector, there would be no excess PW in about half of the plays because HF water demand exceeds PW volumes in those plays. PW quality can be highly saline with median total dissolved solids up to 255 g/L in the Bakken play, ~7× seawater. Intensive water treatment required for PW from most unconventional plays would further reduce PW volumes by at least 2×. Desalination would also result in large volumes of salt concentrates, equivalent to ~3000 Olympic swimming pools in the Permian Delaware Basin in 2017. While water demands outside the energy sector could accommodate PW volumes, much lower PW volumes relative to water demand in most regions would not substantially alleviate water scarcity. However, large projected PW volumes relative to HF water demand over the life of the play in the Permian Delaware Basin may provide a substantial new water source for beneficial use in the future. Large knowledge gaps in PW quality, lack of appropriate regulations, and economic factors currently preclude beneficial uses outside the energy sector in most regions.

5.
Data Brief ; 30: 105406, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32215309

RESUMO

The data in this report are associated with https://doi.org/10.1016/j.scitotenv.2020.137085[4] and include data on water volumes and water quality related to the major unconventional oil and gas plays in the U.S. The data include volumes of water co-produced with oil and gas production, county-level estimates of annual water use volumes by various sectors, including hydraulic fracturing water use, and the quality of produced water. The data on volumes of produced water and hydraulic fracturing water volumes were obtained from the IHS Enerdeq and FracFocus databases. Water use in other sectors was obtained from the U.S. Geological Survey water use database. Data on produced water quality were obtained from the USGS produced waters database.

6.
Environ Sci Technol ; 54(6): 3510-3519, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32062972

RESUMO

The rapid growth in U.S. unconventional oil and gas has made energy more available and affordable globally but brought environmental concerns, especially related to water. We analyzed the water-related sustainability of energy extraction, focusing on: (a) meeting the rapidly rising water demand for hydraulic fracturing (HF) and (b) managing rapidly growing volumes of water co-produced with oil and gas (produced water, PW). We analyzed historical (2009-2017) HF water and PW volumes in ∼73 000 wells and projected future water volumes in major U.S. unconventional oil (semiarid regions) and gas (humid regions) plays. Results show a marked increase in HF water use, and depleting groundwater in some semiarid regions (e.g., by ≤58 ft [18 m]/year in Eagle Ford). PW from oil reservoirs (e.g., Permian) is ∼15× higher than that from gas reservoirs (Marcellus). Water issues related to both HF water demand and PW supplies may be partially mitigated by closing the loop through reuse of PW for HF of new wells. However, projected PW volumes exceed HF water demand in semiarid Bakken (2.1×), Permian Midland (1.3×), and Delaware (3.7×) oil plays, with the Delaware oil play accounting for ∼50% of the projected U.S. oil production. Therefore, water issues could constrain future energy production, particularly in semiarid oil plays.


Assuntos
Água Subterrânea , Fraturamento Hidráulico , Poluentes Químicos da Água , Delaware , Gás Natural , Campos de Petróleo e Gás , Estados Unidos , Água , Poços de Água
7.
Proc Natl Acad Sci U S A ; 115(6): E1080-E1089, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358394

RESUMO

Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002-2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤-0.5 km3/y) and increasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y, whereas most models estimate decreasing trends (-71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71-82 km3/y) but negative for models (-450 to -12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated.

8.
Environ Sci Technol ; 51(18): 10903-10912, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28876906

RESUMO

The Permian Basin is being transformed by the "shale revolution" from a major conventional play to the world's largest unconventional play, but water management is critical in this semiarid region. Here we explore evolving issues associated with produced water (PW) management and hydraulic fracturing water demands based on detailed well-by-well analyses. Our results show that although conventional wells produce ∼13 times more water than oil (PW to oil ratio, PWOR = 13), this produced water has been mostly injected back into pressure-depleted oil-producing reservoirs for enhanced oil recovery. Unconventional horizontal wells use large volumes of water for hydraulic fracturing that increased by a factor of ∼10-16 per well and ∼7-10 if normalized by lateral well length (2008-2015). Although unconventional wells have a much lower PWOR of 3 versus 13 from conventional wells, this PW cannot be reinjected into the shale reservoirs but is disposed into nonproducing geologic intervals that could result in overpressuring and induced seismicity. The potential for PW reuse from unconventional wells is high because PW volumes can support hydraulic fracturing water demand based on 2014 data. Reuse of PW with minimal treatment (clean brine) can partially mitigate PW injection concerns while reducing water demand for hydraulic fracturing.


Assuntos
Fraturamento Hidráulico , Campos de Petróleo e Gás , Poços de Água , Águas Residuárias , Água
9.
Environ Sci Technol ; 51(24): 14453-14461, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28841009

RESUMO

Production of oil from shale and tight reservoirs accounted for almost 50% of 2016 total U.S. production and is projected to continue growing. The objective of our analysis was to quantify the water outlook for future shale oil development using the Eagle Ford Shale as a case study. We developed a water outlook model that projects water use for hydraulic fracturing (HF) and flowback and produced water (FP) volumes based on expected energy prices; historical oil, natural gas, and water-production decline data per well; projected well spacing; and well economics. The number of wells projected to be drilled in the Eagle Ford through 2045 is almost linearly related to oil price, ranging from 20 000 wells at $30/barrel (bbl) oil to 97 000 wells at $100/bbl oil. Projected FP water volumes range from 20% to 40% of HF across the play. Our base reference oil price of $50/bbl would result in 40 000 additional wells and related HF of 265 × 109 gal and FP of 85 × 109 gal. The presented water outlooks for HF and FP water volumes can be used to assess future water sourcing and wastewater disposal or reuse, and to inform policy discussions.


Assuntos
Fraturamento Hidráulico , Águas Residuárias , Poços de Água , Gás Natural , Campos de Petróleo e Gás , Água
10.
Environ Sci Technol ; 50(18): 10273-81, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27525515

RESUMO

The water footprint of oil production, including water used for hydraulic fracturing (HF) and flowback-produced (FP) water, is increasingly important in terms of HF water sourcing and FP water management. Here, we evaluate trends in HF water use relative to supplies and FP water relative to disposal using well by well analysis in the Bakken Play. HF water use per well increased by ∼6 times from 2005-2014, totaling 24.5 × 10(9) gal (93 × 10(9) L) for ∼10 140 wells. Water supplies expanded to meet increased demand, including access of up to ∼33 × 10(9) gal/year (125 × 10(9) L/year) from Lake Sakakawea, expanding pipeline infrastructure by hundreds of miles and allowing water transfers from irrigation. The projected inventory of ∼60 000 future wells should require an additional ∼11 times more HF water. Cumulative FP water has been managed by disposal into an increasing number (277 to 479) of salt water disposal wells. FP water is projected to increase by ∼10 times during the play lifetime (∼40 years). Disposal of FP water into deeper geologic units should be considered because of reported overpressuring of parts of the Dakota Group. The long time series shows how policies have increased water supplies for HF and highlights potential issues related to FP water management.


Assuntos
Fraturamento Hidráulico , Água/química , Estados Unidos , Poluentes Químicos da Água , Abastecimento de Água , Poços de Água
12.
Environ Sci Technol ; 48(4): 2464-71, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24467212

RESUMO

Considerable controversy continues about water availability for and potential impacts of hydraulic fracturing (HF) of hydrocarbon assets on water resources. Our objective was to quantify HF water volume in terms of source, reuse, and disposal, using the Barnett Shale in Texas as a case study. Data were obtained from commercial and state databases, river authorities, groundwater conservation districts, and operators. Cumulative water use from ∼ 18,000 (mostly horizontal) wells since 1981 through 2012 totaled ∼ 170,000 AF (210 Mm(3)); ∼ 26 000 AF (32 Mm(3)) in 2011, representing 32% of Texas HF water use and ∼ 0.2% of 2011 state water consumption. Increase in water use per well by 60% (from 3 to 5 Mgal/well; 0.011-0.019 Mm(3)) since the mid-2000s reflects the near-doubling of horizontal-well lengths (2000-3800 ft), offset by a reduction in water-use intensity by 40% (2000-1200 gal/ft; 2.5-1.5 m(3)/m). Water sources include fresh surface water and groundwater in approximately equal amounts. Produced water amount is inversely related to gas production, exceeds HF water volume, and is mostly disposed in injection wells. Understanding the historical evolution of water use in the longest-producing shale play is invaluable for assessing its water footprint for energy production.


Assuntos
Sedimentos Geológicos/química , Eliminação de Resíduos Líquidos/história , Poluentes Químicos da Água/análise , Água/química , Fracionamento Químico , Água Subterrânea/química , História do Século XX , História do Século XXI , Minerais/química , Texas , Fatores de Tempo , Qualidade da Água
13.
Environ Sci Technol ; 47(18): 10694-702, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23937146

RESUMO

Storage of CO2 in deep saline reservoirs has been proposed to mitigate anthropogenically forced climate change. If injected CO2 unexpectedly migrates upward in shallow groundwater resources, potable groundwater may be negatively affected. This study examines the effects of an increase in pCO2 (partial pressure of CO2) on groundwater chemistry in a siliclastic-dominated aquifer by comparing a laboratory batch experiment and a field single-well push-pull test on the same aquifer sediment and groundwater. Although the aquifer mineralogy is predominately siliclastic, carbonate dissolution is the primary geochemical reaction. In the batch experiment, Ca concentrations increase until calcite saturation is reached at ~500 h. The concentrations of the elements Ca, Mg, Sr, Ba, Mn, and U are controlled by carbonate dissolution. Silicate dissolution controls Si and K concentrations and is ~2 orders of magnitude slower than carbonate dissolution. Changing pH conditions through the experiment initially mobilize Mo, V, Zn, Se, and Cd; sorption reactions later remove these elements from solution and concentrations drop to pre-experiment levels. The EPA's primary and secondary MCL's are not exceeded except for Mn, which exceeded the EPA's secondary standard of 0.05 mg/L. Push-pull results also identify carbonate and silicate dissolution reactions ~2 orders of magnitude slower than batch experiments.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Água Subterrânea/química , Sequestro de Carbono , Carbonatos/química , Metaloides/química , Metais/química , Pressão Parcial , Silicatos/química , Silício/química
14.
Environ Sci Technol ; 47(19): 11326-34, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23937226

RESUMO

Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000.


Assuntos
Centrais Elétricas , Abastecimento de Água , Texas
15.
Meteorit Planet Sci ; 48(11): 2271-2288, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26074718

RESUMO

Surface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites. A subset of fast neutron data having lower statistical precision show spatial variations that are consistent with a 400 ppm variability in hydrogen concentrations across Vesta and supports the idea that Vesta's hydrogen is due to long-term delivery of carbonaceous chondrite material.

16.
Science ; 338(6104): 242-6, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22997135

RESUMO

Using Dawn's Gamma Ray and Neutron Detector, we tested models of Vesta's evolution based on studies of howardite, eucrite, and diogenite (HED) meteorites. Global Fe/O and Fe/Si ratios are consistent with HED compositions. Neutron measurements confirm that a thick, diogenitic lower crust is exposed in the Rheasilvia basin, which is consistent with global magmatic differentiation. Vesta's regolith contains substantial amounts of hydrogen. The highest hydrogen concentrations coincide with older, low-albedo regions near the equator, where water ice is unstable. The young, Rheasilvia basin contains the lowest concentrations. These observations are consistent with gradual accumulation of hydrogen by infall of carbonaceous chondrites--observed as clasts in some howardites--and subsequent removal or burial of this material by large impacts.

17.
Proc Natl Acad Sci U S A ; 109(24): 9320-5, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645352

RESUMO

Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km(3) of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km(3), occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km(3) shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.

18.
Environ Sci Technol ; 42(20): 7566-72, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18983076

RESUMO

Nitrate (NO3) profiles in semiarid unsaturated zones archive land use change (LUC) impacts on nitrogen (N) cycling with implications for agricultural N management and groundwater quality. This study quantified LUC impacts on NO3 inventories and fluxes by measuring NO3 profiles beneath natural and rainfed (nonirrigated) agricultural ecosystems in the southern High Plains (SHP). Inventories of NO3-N under natural ecosystems in the SHP normalized by profile depth are extremely low (2-10 kg NO3-N/ha/m), in contrast to those in many semiarid regions in the southwestern U.S. Many profiles beneath cropland (9 of 19 profiles) have inventories at depth that range from 28-580 kg NO3--N/ha/m (median 135 kg/ha/m) that correspond to initial cultivation, dated using soil water Cl. These inventories represent 74% (median) of the total inventories in these profiles. This NO3 most likely originated from cultivation causing mineralization and nitrification of soil organic nitrogen (SON) in old soil water (precultivation) and is attributed to enhanced microbial activity caused by increased soil wetness beneath cropland (median matric potential -42 m) relative to that beneath natural ecosystems (median -211 m). The SON source is supported by isotopes of NO3 (delta15N: +5.3 to +11.6; delta18O: +3.6 to +12.1). Limited data in South Australia suggest similar processes beneath cropland. Mobilization of the total inventories in these profiles caused by increased drainage/ recharge related to cultivation in the SHP could increase current NO3-N levels in the underlying Ogallala aquifer by an additional 2-26 mg/L (median 17 mg/L).


Assuntos
Conservação dos Recursos Naturais , Clima Desértico , Nitratos/análise , Nitrogênio/metabolismo , Agricultura , Cloretos/análise , Ecossistema , Chuva , Solo/análise , Texas , Água
19.
Environ Sci Technol ; 42(23): 8648-53, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19192776

RESUMO

Perchlorate (Cl4-) reservoirs that accumulated in semiarid unsaturated zones, similar to chloride (Cl-), can contaminate underlying aquifers if they are mobilized. The purpose of this study was to evaluate Cl)4- mobilization related to land-use change from natural to agricultural ecosystems in the southern High Plains (SHP, USA), where large ClO4- concentrations (< or =60 microg/L) are found in the underlying Ogallala aquifer. Boreholes were drilled and sampled beneath natural ecosystems (3 boreholes) and beneath nonirrigated (rainfed, 7 boreholes) agricultural ecosystems. Large ClO4- reservoirs (361-934 g ClO4-/ha; peaks 47-111 gamma ClO4-/L pore water), that accumulated for up to approximately 30,000 yr under natural ecosystems, are being displaced to depths of 2.2 to >9.2 m in sampled boreholes under rainfed agriculture by increased drainage/recharge. High correlations between ClO4- and Cl- under natural areas (r = 0.81) and rainfed agricultural areas (r = 0.88) indicate that accumulation and mobilization of ClO4- can be predicted from Cl- data. Minimal analysis of ClO4- (e.g., two points, minimum and maximum Cl- concentrations in each profile) can be used to predict ClO4- inventories to within 9% of estimates based on detailed sampling. A pooled linear regression model based on all data in this study (99 points) predicts ClO4- inventories to within 19% of measured inventories. Continued mobilization of pre-existing unsaturated zone ClO4- reservoirs (361-934 g/ha) could increase the current groundwater ClO4- values by a further 8-21 microg/L in the SHP.


Assuntos
Agricultura , Ecossistema , Movimento (Física) , Percloratos/química , Cloretos/análise , Geografia , Chuva , Análise de Regressão , Solo , Texas , Abastecimento de Água
20.
Environ Sci Technol ; 41(20): 6914-9, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17993128

RESUMO

Arsenic compounds have been applied at the land surface as pesticides in agricultural areas globally. The purpose of this study was to evaluate the fate of anthropogenic arsenic applications related to agriculture, using arsenic applications on cotton in the southern High Plains (SHP), Texas, as a case study and examining possible linkages with contamination of the underlying Ogallala aquifer in this region, where 36% of wells exceed the new EPA 10 microg/L standard. Unsaturated zone soil samples were collected from boreholes beneath natural ecosystems (grassland/ shrubland) to provide a control (no arsenic application) (5 profiles) and cotton cropland (20 profiles) for analyses of water-extractable arsenic, vanadium, phosphate, chloride, and nitrate. Natural ecosystem profiles have high arsenic concentrations at depth (maximum of 7.2-69.6 microg As/ kg dry soil at 5.9-21.4 m depth) that are attributed to a geologic source. Most profiles beneath cotton cropland have high arsenic concentrations within the upper meter (profile means 1.7 to 31.6 microg/kg) that correlate with phosphate (r = 0.70, p < 0.01) and are attributed to anthropogenic arsenic application associated with phosphate fertilizer application. High arsenic concentrations at >1 m depth (profile means < or =36.3 microg/kg) found in cropland profiles are attributed to a geologic source because of similarity with profiles beneath natural ecosystems, lack of correlation with phosphate, and pore-water ages that predate anthropogenic arsenic application in many profiles. GIS analyses showed poor correlations between groundwater arsenic and percent cultivated land (r = -0.15, p < 0.01), groundwater nitrate (r = 0.30, p < 0.01), and water table depth (r= -0.31, p < 0.01), further supporting the idea that anthropogenic-derived arsenic in the shallow subsurface is not linked to groundwater arsenic contamination in this region.


Assuntos
Arsênio/análise , Poluentes Químicos da Água/análise , Produtos Agrícolas , Ecossistema , Gossypium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...