Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(49): 16101-16110, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31697083

RESUMO

The recent cost-driven transition from silver- to copper-based inks for printing on flexible substrates is connected with new key challenges. Given the high oxidation sensitivity of copper inks before, during, and after the curing process, the conductivity and thereby the device performance can be affected. Strategies to limit or even avoid this drawback include the development of metal organic decomposition (MOD) inks with selected "protective" ligands. In this study, the influence of the ligand on the oxide formation during the ink decomposition process is described using a wide variety of in situ characterization techniques. It is demonstrated that bidentate ligands provide an improved oxidation barrier, although the copper preservation mechanism has its limits: oxygen can interfere in every reduction pathway depending on the curing duration and atmospheric conditions. The generated insights can be applied in the further evolution toward ambient-curable copper MOD inks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA