Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 295(2): 578-85, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11046091

RESUMO

There is evidence that increased endothelial production of endothelin-1 (ET-1) may contribute to glyceryl trinitrate (GTN) tolerance. We used the competitive ET(A) receptor antagonist ZD2574 to determine whether chronic ET(A) receptor blockade affected the biochemical and functional responses to GTN during the development of GTN tolerance in vivo. Tolerance induced using transdermal GTN patches resulted in a 5.3 +/- 1.2-fold increase in the EC(50) value for GTN relaxation in isolated aorta from GTN-tolerant rats. Coadministration of ZD2574 (100 mg kg(-1) t.i.d. for 3 days) during tolerance induction had no effect on GTN-induced relaxation. This dose of ZD2574 markedly blunted the pressor response to ET-1, indicating effective blockade of ET(A) receptors, and also abolished the initial transient depressor response to ET-1, indicating that blockade of endothelial ET(B) receptors also occurred using this dosage regimen for ZD2574. Consistent with the relaxation data, coadministration of ZD2574 had no effect on the decrease in GTN-induced cGMP accumulation or on the decrease in GTN biotransformation that occurred in aortae from GTN-tolerant animals. Radioimmunoassay data indicated that the GTN tolerance induction protocol caused a 2.3 +/- 0.4-fold and a 2.2 +/- 0.5-fold increase in total tissue ET-1 levels in tolerant aorta and vena cava, respectively. These data suggest that chronic inhibition of ET receptors by ZD2574 was not sufficient to prevent or diminish the tolerance-inducing effects of GTN, and that the increase in ET-1 levels observed in tolerant tissues may occur as a consequence of the vascular changes that occur during chronic GTN exposure.


Assuntos
Antagonistas dos Receptores de Endotelina , Nitroglicerina/farmacologia , Vasodilatadores/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Ligação Competitiva , Biotransformação , Pressão Sanguínea/efeitos dos fármacos , GMP Cíclico/metabolismo , Tolerância a Medicamentos/fisiologia , Endotelina-1/antagonistas & inibidores , Endotelina-1/metabolismo , Endotelina-1/fisiologia , Técnicas In Vitro , Masculino , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Nitroglicerina/farmacocinética , Pirazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A , Receptores de Endotelina/metabolismo , Sulfonamidas/farmacologia , Vasodilatadores/farmacocinética
2.
Arch Biochem Biophys ; 355(2): 137-44, 1998 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-9675019

RESUMO

The only major structural difference between aldehyde reductase, a primarily NADPH-dependent aldo-keto reductase, and aldose reductase, a dually coenzyme-specific (NADPH/NADH) member of the same superfamily, is an additional eight amino acid residues in the substrate/inhibitor binding site (C-terminal region) of aldehyde reductase. On the premise that this segment defines the substrate specificity of the enzyme, a mutant of aldehyde reductase lacking residues 306-313 was constructed. In contrast to wild-type enzyme, the mutant enzyme reduced a narrower range of aldehydes and the new substrate specificity was not similar to aldose reductase as might have been predicted. A major change in coenzyme specificity was observed, however, the mutant enzyme being distinctly NADH preferring(Km, NADH = 35 microM, compared to <5 mM for wild-type and Km, NADPH = 670 microM, compared to 35 microM for wild type). Upon analyzing coordinates of aldehyde and aldose reductase, we found that deletion of residues 306-313 may have created a truncated enzyme that retained the three-dimensional structural features of the enzyme's C-terminal segment. The change in substrate specificity could be explained by the new alignment of amino acids. The reversal of coenzyme specificity appeared to be due to a significant backbone shift initiated by the formation of a strong hydrogen bond between Tyr319 and Val300. A similar bond exists in aldose reductase (Tyr309-Ala299). It appears, therefore, that as far as coenzyme specificity is concerned, deletion of residues 306-313 has converted aldehyde reductase into an aldose reductase-like enzyme.


Assuntos
Aldeído Redutase/metabolismo , Aldeído Redutase/fisiologia , NADP/metabolismo , NAD/metabolismo , Aldeído Redutase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Rim , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Suínos
3.
Proteins ; 29(2): 186-92, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9329083

RESUMO

Aldehyde reductase is an enzyme capable of metabolizing a wide variety of aldehydes to their corresponding alcohols. The tertiary structures of aldehyde reductase and aldose reductase are similar and consist of an alpha/beta-barrel with the active site located at the carboxy terminus of the strands of the barrel. We have determined the X-ray crystal structure of porcine aldehyde reductase holoenzyme in complex with an aldose reductase inhibitor, tolrestat, at 2.4 A resolution to obtain a picture of the binding conformation of inhibitors to aldehyde reductase. Tolrestat binds in the active site pocket of aldehyde reductase and interacts through van der Waals contacts with Arg 312 and Asp 313. The carboxylate group of tolrestat is within hydrogen bonding distance with His 113 and Trp 114. Mutation of Arg 312 to alanine in porcine aldehyde reductase alters the potency of inhibition of the enzyme by aldose reductase inhibitors. Our results indicate that the structure of the inhibitor-binding site of aldehyde reductase differs from that of aldose reductase due to the participation of nonconserved residues in its formation. A major difference is the participation of Arg 312 and Asp 313 in lining the inhibitor-binding site in aldehyde reductase but not in aldose reductase.


Assuntos
Aldeído Redutase/metabolismo , Inibidores Enzimáticos/metabolismo , Naftalenos/metabolismo , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Naftalenos/química , Naftalenos/farmacologia , Suínos
5.
FEBS Lett ; 321(1): 37-40, 1993 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-8385629

RESUMO

The inositol monophosphatase from bovine brain is inactivated by the histidine-specific reagent diethylpyrocarbonate. Using 4 mM reagent at pH 6.5, the reaction results in the modification of 3 equivalents of histidine per polypeptide chain. The loss of activity occurs at the same rate as the slowest reacting of these residues. Site directed mutagenesis studies have been used to generate a mutated enzyme species bearing a His-217-->Gln replacement and have shown that it is the modification of histidine 217 which results in the inactivation of the enzyme.


Assuntos
Dietil Pirocarbonato/química , Histidina/química , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Animais , Sequência de Bases , Sítios de Ligação , Bovinos , Lítio/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/química , Monoéster Fosfórico Hidrolases/química , Proteínas Recombinantes
6.
FEBS Lett ; 319(1-2): 49-53, 1993 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-8384127

RESUMO

Bovine brain inositol monophosphatase is inactivated when trypsin catalyses the cleavage of a single peptide bond between Lys-36 and Ser-37. This proteolysis is closely followed by cleavage at two other sites in the protein between Lys-78 and Ser-79 and between Lys-156 and Ser-157 suggesting that all of these sites are exposed in the native conformation of the protein. All of these residues are predicted to lie at the ends of alpha helices. The most susceptible bond (Lys-36--Ser-37) is predicted to lie in a highly flexible region of the protein. Circular dichroism studies suggest that approximately 40% of the secondary structure of this protein is helical which is similar to that predicted by the algorithm of Garnier et al. [(1978) J. Mol. Biol. 120, 97-120].


Assuntos
Encéfalo/enzimologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia em Gel , Dicroísmo Circular , Cinética , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA