Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6414-6423, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37399449

RESUMO

Graphene oxide (GO) is a promising membrane material for chemical separations, including water treatment. However, GO has often required postsynthesis chemical modifications, such as linkers or intercalants, to improve either the permeability, performance, or mechanical integrity of GO membranes. In this work, we explore two different feedstocks of GO to investigate chemical and physical differences, where we observe up to a 100× discrepancy in the permeability-mass loading trade-off while maintaining nanofiltration capacity. GO membranes also show structural stability and chemical resilience to harsh pH conditions and bleach treatment. We probe GO and the resulting assembled membranes through a variety of characterization approaches, including a novel scanning-transmission-electron-microscopy-based visualization approach, to connect differences in sheet stacking and oxide functional groups to significant improvements in permeability and chemical stability.

2.
ACS Nano ; 16(8): 12083-12094, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35867353

RESUMO

Nanoparticles are an important class of materials that exhibit special properties arising from their high surface area-to-volume ratio. Scanning transmission electron microscopy (STEM) has played an important role in nanoparticle characterization, owing to its high spatial resolution, which allows direct visualization of composition and morphology with atomic precision. This typically comes at the cost of sample size, potentially limiting the accuracy and relevance of STEM results, as well as the ability to meaningfully track changes in properties that vary spatially. In this work, automated STEM data acquisition and analysis techniques are employed that enable physical and compositional properties of nanoparticles to be obtained at high resolution over length scales on the order of microns. This is demonstrated by studying the localized effects of potential cycling on electrocatalyst degradation across proton exchange membrane fuel cell cathodes. In contrast to conventional, manual STEM measurements, which produce particle size distributions representing hundreds of particles, these high-throughput automated methods capture tens of thousands of particles and enable nanoparticle size, number density, and composition to be measured as a function of position within the cathode. Comparing the properties of pristine and degraded fuel cells provides statistically robust evidence for the inhomogeneous nature of catalyst degradation across electrodes. These results demonstrate how high-throughput automated STEM techniques can be utilized to investigate local phenomena occurring in nanoparticle systems employed in practical devices.

3.
ACS Appl Mater Interfaces ; 9(35): 29839-29848, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28809471

RESUMO

Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...