Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(28): e2300520, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191281

RESUMO

Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable method is reported for producing vertically aligned Sb-doped SnO2 nanotubes with perfectly-square geometries on Au nanoparticle covered m-plane sapphire using mist chemical vapor deposition. Their inclination can be varied using r- and a-plane sapphire, while unaligned square nanotubes of the same high structural quality can be grown on silicon and quartz. X-ray diffraction measurements and transmission electron microscopy show that they adopt the rutile structure growing in the [001] direction with (110) sidewalls, while synchrotron X-ray photoelectron spectroscopy reveals the presence of an unusually strong and thermally resilient 2D surface electron gas. This is created by donor-like states produced by the hydroxylation of the surface and is sustained at temperatures above 400 °C by the formation of in-plane oxygen vacancies. This persistent high surface electron density is expected to prove useful in gas sensing and catalytic applications of these remarkable structures. To illustrate their device potential, square SnO2 nanotube Schottky diodes and field effect transistors with excellent performance characteristics are fabricated.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234425

RESUMO

Perovskite materials offer high-efficiency low-cost solar cells and applications versatility. We report on cesium-based hybrid perovskite solar cells with wavelength-selective properties ranging from 500 nm (UV-VIS) to 800 nm (IR). The band gap tuning was achieved through composition changes of mainly lead(II) iodide PbI2 and lead(II) bromide PbBr2. The optical spectra of the developed materials were studied, including the photoluminescence (PL), optical transparency, X-ray diffraction and external quantum efficiency for samples prepared under different compositions. It was found that a high content of iodine displayed a photoluminescence (PL) peak at 790 nm, whereas a high content of bromine showed a PL peak at 548 nm. The combined composition mixture of PbI2 and PbBr2 can be fine-tuned to prepare materials that absorbed light in the visible range (640-660 nm) or other selective wavelengths in the range from 500 to 800 nm. The illuminated current-voltage characteristics of the solar cells were carried out under the AM 1.5 condition using an ABET solar simulator with a reference solar cell for comparison and control. The average efficiency of the fabricated solar cells ranged from 3.5% to 15.5%, depending on perovskite composition. Wavelength-selective solar cells have potential applications in smart windows, building of integrated PVs and solar-operated greenhouses.

3.
Chemphyschem ; 22(13): 1344-1351, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33942472

RESUMO

ZnO is a strong candidate for transparent electronic devices due to its wide band gap and earth-abundance, yet its practical use is limited by its surface metallicity arising from a surface electron accumulation layer (SEAL). The SEAL forms by hydroxylation of the surface under normal atmospheric conditions, and is present at all crystal faces of ZnO, although with differing hydroxyl structures. Multilayer aryl films grafted from aryldiazonium salts have previously been shown to decrease the downward bending at O-polar ZnO thin films, with Zn-O-C bonds anchoring the aryl films to the substrate. Herein we show that the Zn-polar (0001), O-polar (000 1‾ ), and non-polar m-plane (10 1‾ 0) faces of ZnO single crystals, can also be successfully electrografted with nitrophenyl (NP) films. In all cases, X-ray photoelectron spectroscopy (XPS) measurements reveal that the downward surface band bending decreases after modification. XPS provides strong evidence for Zn-O-C bonding at each face. Electrochemical reduction of NP films on O-polar ZnO single crystals converts the film to a mainly aminophenyl layer, although with negligible further change in band bending. This contrasts with the large upward shifts in band bending caused by X-ray induced reduction.

4.
Phys Chem Chem Phys ; 21(32): 17913-17922, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31380874

RESUMO

Tin(iv) dioxide (SnO2) is a technologically important transparent conducting oxide with high chemical stability. In air, the SnO2 surface is terminated with hydroxyl groups which cause the electronic bands to bend downward at the surface capturing a two-dimensional surface electron accumulation layer (SEAL). The SEAL promotes adsorption at the surface, giving environmentally-sensitive electronic properties; this sensitivity is a barrier to some potential applications of the material. This work investigates surface modification of SnO2via reaction with an aryldiazonium salt as a route to controlling the surface band bending. We compare the surface layers formed by reaction at open-circuit potential and under potential control of 4-(trifluoromethyl)benzene diazonium ions with moderately- and highly-doped (101) SnO2 thin films grown by plasma-assisted molecular beam epitaxy. Atomic force microscopy and synchrotron X-ray photoelectron spectroscopy (XPS) measurements demonstrate that both reaction conditions lead to covalently-attached 4-(trifluoromethyl)phenyl groups, with grafting at open-circuit potential giving thinner layers (<2 nm) and fewer direct bonds to the surface than electrografting (layer thickness >3 nm). Valence band investigations show that for all samples the 4-(trifluoromethyl)phenyl layers decrease the surface downward band bending with the greatest effect observed for the electrografted sample. In the latter case, a +0.29 eV shift in band bending relative to that of the unmodified material indicates the success in turning the surface electron accumulation layer into a depletion layer.

5.
Phys Rev Lett ; 122(25): 256403, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347908

RESUMO

We present evidence, from theory and experiment, that ZnSnN_{2} and MgSnN_{2} can be used to match the band gap of InGaN without alloying-by exploiting cation disorder in a controlled fashion. We base this on the determination of S, the long-range order parameter of the cation sublattice, for a series of epitaxial thin films of ZnSnN_{2} and MgSnN_{2} using three different techniques: x-ray diffraction, Raman spectroscopy, and in situ electron diffraction. We observe a linear relationship between S^{2} and the optical band gap of both ZnSnN_{2} (1.12-1.98 eV) and MgSnN_{2} (1.87-3.43 eV). The results clearly demonstrate the correlation between controlled heterovalent cation ordering and the optical band gap, which applies to a broad group of emerging ternary heterovalent compounds and has implications for similar trends in other material properties besides the band gap.

6.
ACS Appl Mater Interfaces ; 8(45): 31392-31402, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27768292

RESUMO

ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F13OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F13OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...