Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 278(25): 22265-71, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12660230

RESUMO

The activation of purified and phospholipid-depleted plasma membrane Ca2+-ATPase by phospholipids and ATP was studied. Enzyme activity increased with [ATP] along biphasic curves representing the sum of two Michaelis-Menten equations. Acidic phospholipids (phosphatidylinositol (PI) and phosphatidylserine (PS)) increased Vmax without affecting apparent affinities of the ATP sites. In the presence of 20 microm ATP, phosphorylation of the enzyme preincubated with Ca2+ (CaE1) was very fast (kapp congruent with 400 s-1). vo of phosphorylation of CaE1 increased with [ATP] along a Michaelis-Menten curve (Km of 15 microm) and was phospholipid-independent. Without Ca2+ preincubation (E1 + E2), vo of phosphorylation was also phospholipid-independent, but was slower and increased with [ATP] along biphasic curves. The high affinity component reflected rapid phosphorylation of CaE1, the low affinity component the E2 --> E1 shift, which accelerated to a rate higher than that of the ATPase activity when ATP was bound to the regulatory site. Dephosphorylation of EP did not occur without ATP. Dephosphorylation increased along a biphasic curve with increasing [ATP], showing that ATP accelerated dephosphorylation independently of phospholipid. PI, but not phosphatidylethanolamine (PE), accelerated dephosphorylation even in the absence of ATP. kapp for dephosphorylation was 57 s-1 at 0 microM ATP; that rate was further increased by ATP. Steady-state [EP] x kapp for dephosphorylation varied with [ATP], and matched the Ca2+-ATPase activity measured under the same conditions. Apparently, the catalytic cycle is rate-limited by dephosphorylation. Acidic phospholipids stimulate Ca2+-ATPase activity by accelerating dephosphorylation, while ATP accelerates both dephosphorylation and the conformational change from E2 to E1, further stimulating the ATPase activity.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Transportadoras de Cálcio/sangue , Membrana Eritrocítica/enzimologia , Fosfolipídeos/farmacologia , Animais , Ativação Enzimática , Concentração de Íons de Hidrogênio , Cinética , Relação Estrutura-Atividade , Suínos
2.
Biochem J ; 361(Pt 2): 355-61, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11772407

RESUMO

Pre-steady-state phosphorylation and dephosphorylation of purified and phospholipid-depleted plasma-membrane Ca(2+)-ATPase (PMCA) solubilized in the detergent polyoxyethylene 10 lauryl ether were studied at 25 degrees C. The time course of phosphorylation with ATP of the enzyme associated with Ca(2+), probably the true phosphorylation reaction, showed a fast phase (k(app) near 400 s(-1)) followed by a slow phase (k(app)=23 s(-1)). With asolectin or acidic phosphatidylinositol, the concentration of phosphoenzyme (EP) increased at as high a rate as before, passed through a maximum at 4 ms and stabilized at a steady level that was approx. half that without lipids. Calmodulin (CaM) did not change the rate of the fast phase, accelerated the slow phase (k(app)=93 s(-1)) and increased [EP] with small changes in the shape of the time course. Dephosphorylation was slow (k(app)=30 s(-1)) and insensitive to CaM. Asolectin accelerated dephosphorylation, which followed biexponential kinetics with fast (k(app)=220 s(-1)) and slow (k(app)=20 s(-1)) components. CaM stimulated the fast component by nearly 50%. The results show that the behaviour of the PMCA is complex, and suggest that acidic phospholipids and CaM activate PMCA through different mechanisms. Acceleration of dephosphorylation seems relevant during activation of the PMCA by acidic phospholipids.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/enzimologia , Detergentes/química , Cinética , Fosfatidilcolinas , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA