Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(19): 8848-8854, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33949563

RESUMO

Advancement of diamond based photonic circuitry requires robust fabrication protocols of key components - including diamond resonators and cavities. Here, we present 1D (nanobeam) photonic crystal cavities generated from single crystal diamond membranes utilising a metallic tungsten layer as a restraining, conductive and removable hard mask. The use of tungsten instead of a more conventional silicon oxide layer enables good repeatability and reliability of the fabrication procedures. The process yields high quality diamond cavities with quality factors (Q-factors) approaching 1 × 104. Finally, we show that the cavities can be picked up and transferred onto a trenched substrate to realise fully suspended diamond cavities. Our fabrication process demonstrates the capability of diamond membranes as modular components for broader diamond based quantum photonic circuitry.

2.
ACS Appl Mater Interfaces ; 12(26): 29700-29705, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492334

RESUMO

Group IV color centers in diamond (Si, Ge, Sn, and Pb) have recently emerged as promising candidates for realization of scalable quantum photonics. However, their synthesis in nanoscale diamond is still in its infancy. In this work we demonstrate controlled synthesis of selected group IV defects (Ge and Sn) into nanodiamonds and nanoscale single crystal diamond membranes by microwave plasma chemical vapor deposition. We take advantage of inorganic salts to prepare the chemical precursors that contain the required ions that are then incorporated into the growing diamond. Photoluminescence measurements confirm that the selected group IV emitters are present in the diamond without degrading its structural quality. Our results are important to expand the versatile synthesis of color centers in diamond.

3.
Adv Mater ; 32(9): e1906458, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989695

RESUMO

Diamond is known to possess a range of extraordinary properties that include exceptional mechanical stability. In this work, it is demonstrated that nanoscale diamond pillars can undergo not only elastic deformation (and brittle fracture), but also a new form of plastic deformation that depends critically on the nanopillar dimensions and crystallographic orientation of the diamond. The plastic deformation can be explained by the emergence of an ordered allotrope of carbon that is termed O8-carbon. The new phase is predicted by simulations of the deformation dynamics, which show how the sp3 bonds of (001)-oriented diamond restructure into O8-carbon in localized regions of deforming diamond nanopillars. The results demonstrate unprecedented mechanical behavior of diamond, and provide important insights into deformation dynamics of nanostructured materials.

4.
Sci Adv ; 5(5): eaav9180, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31058227

RESUMO

Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light-emitting diodes, and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescence properties are usually studied under Stokes excitation, in which the emitted photons are at a lower energy than the excitation ones. In this work, we explore the opposite anti-Stokes process, where excitation is performed with lower-energy photons. We report that the process is sufficiently efficient to excite even a single quantum system-namely, the germanium-vacancy center in diamond. Consequently, we leverage the temperature-dependent, phonon-assisted mechanism to realize an all-optical nanoscale thermometry scheme that outperforms any homologous optical method used to date. Our results frame a promising approach for exploring fundamental light-matter interactions in isolated quantum systems and harness it toward the realization of practical nanoscale thermometry and sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...