Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11866-11875, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621677

RESUMO

The available methods of chemical synthesis have arguably contributed to the prevalence of aromatic rings, such as benzene, toluene, xylene, or pyridine, in modern pharmaceuticals. Many such sp2-carbon-rich fragments are now easy to synthesize using high-quality cross-coupling reactions that click together an ever-expanding menu of commercially available building blocks, but the products are flat and lipophilic, decreasing their odds of becoming marketed drugs. Converting flat aromatic molecules into saturated analogues with a higher fraction of sp3 carbons could improve their medicinal properties and facilitate the invention of safe, efficacious, metabolically stable, and soluble medicines. In this study, we show that aromatic and heteroaromatic drugs can be readily saturated under exceptionally mild rhodium-catalyzed hydrogenation, acid-mediated reduction, or photocatalyzed-hydrogenation conditions, converting sp2 carbon atoms into sp3 carbon atoms and leading to saturated molecules with improved medicinal properties. These methods are productive in diverse pockets of chemical space, producing complex saturated pharmaceuticals bearing a variety of functional groups and three-dimensional architectures. The rhodium-catalyzed method tolerates traces of dimethyl sulfoxide (DMSO) or water, meaning that pharmaceutical compound collections, which are typically stored in wet DMSO, can finally be reformatted for use as substrates for chemical synthesis. This latter application is demonstrated through the late-stage saturation (LSS) of 768 complex and densely functionalized small-molecule drugs.


Assuntos
Ródio , Catálise , Ródio/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Hidrogenação , Estrutura Molecular
2.
Org Lett ; 19(7): 1698-1701, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28349698

RESUMO

The first enantioselective total synthesis of the epipolythiodiketopiperazine (ETP) natural product (-)-acetylapoaranotin (3) is reported. The concise synthesis was enabled by an eight-step synthesis of a key cyclohexadienol-containing amino ester building block. The absolute stereochemistry of both amino ester building blocks used in the synthesis is set through catalytic asymmetric (1,3)-dipolar cycloaddition reactions. The formal syntheses of (-)-emethallicin E and (-)-haemotocin are also achieved through the preparation of a symmetric cyclohexadienol-containing diketopiperazine.


Assuntos
Dicetopiperazinas/química , Dissulfetos/química , Reação de Cicloadição , Estrutura Molecular , Estereoisomerismo
3.
J Am Chem Soc ; 139(13): 4729-4736, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28199106

RESUMO

Mechanistic studies of a general reaction that decages a wide range of substrates on exposure to visible light are described. The reaction involves a photochemically initiated reduction of a quinone mediated by an appended thioether. After reduction, a trimethyl lock system incorporated into the quinone leads to thermal decaging. The reaction could be viewed as an electron-transfer initiated reduction of the quinone or as a hydrogen abstraction-Norrish Type II-reaction. Product analysis, kinetic isotope effects, stereochemical labeling, radical clock, and transient absorption studies support the electron transfer mechanism. The differing reactivities of the singlet and triplet states are determined, and the ways in which this process deviates from typical quinone photochemistry are discussed. The mechanism suggests strategies for extending the reaction to longer wavelengths that would be of interest for applications in chemical biology and in a therapeutic setting.

4.
Proc Natl Acad Sci U S A ; 106(26): 10487-92, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19332790

RESUMO

A general approach to high-throughput screening of enantiomeric excess (ee) and concentration was developed by using indicator displacement assays (IDAs), and the protocol was then applied to the vicinal diol hydrobenzoin. The method involves the sequential utilization of what we define herein as screening, training, and analysis plates. Several enantioselective boronic acid-based receptors were screened by using 96-well plates, both for their ability to discriminate the enantiomers of hydrobenzoin and to find their optimal pairing with indicators resulting in the largest optical responses. The best receptor/indicator combination was then used to train an artificial neural network to determine concentration and ee. To prove the practicality of the developed protocol, analysis plates were created containing true unknown samples of hydrobenzoin generated by established Sharpless asymmetric dihydroxylation reactions, and the best ligand was correctly identified.


Assuntos
Benzoína/análogos & derivados , Técnicas de Química Combinatória/métodos , Benzoína/química , Ácidos Borônicos/química , Catecóis/química , Técnicas de Química Combinatória/instrumentação , Indicadores e Reagentes/química , Cinética , Modelos Químicos , Estrutura Molecular , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...