Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 11(2): 529-541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899360

RESUMO

Immune checkpoints are known to contribute to tumor progression by enhancing cancer's ability to evade the immune system and metastasize. Immunotherapies, including monoclonal antibodies, have been developed to target specific immunosuppressive molecules on the membranes of cancer cells and have proven revolutionary in the field of oncology. Recently, small molecule inhibitors (SMIs) have gained increased attention in cancer research with potential applications in immunotherapy. SMIs have desirable benefits over large-molecule inhibitors, such as monoclonal antibodies, including greater cell permeability, organ specificity, longer half-lives, cheaper production costs, and the possibility for oral administration. This paper will review the mechanisms by which noteworthy and novel immune checkpoints contribute to tumor progression, and how they may be targeted by SMIs and epigenetic modifiers to offer possible adjuvants to established therapeutic regimens. SMIs target immune checkpoints in several ways, such as blocking signaling between tumorigenic factors, building immune tolerance, and direct inhibition via epigenetic repression of immune inhibitory molecules. Further investigation into combination therapies utilizing SMIs and conventional cancer therapies will uncover new treatment options that may provide better patient outcomes across a range of cancers.

2.
Cell Rep ; 21(9): 2585-2596, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186693

RESUMO

Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-ß) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-ß controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-ß signaling (TßRIIocy-/-), we show that TGF-ß regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/metabolismo , Osteócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Remodelação Óssea/fisiologia , Linhagem Celular , Imuno-Histoquímica , Masculino , Camundongos , Transdução de Sinais/fisiologia
3.
Curr Osteoporos Rep ; 15(1): 18-23, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28161871

RESUMO

PURPOSE OF REVIEW: The role of bone-derived factors in regulation of skeletal muscle function is an important emerging aspect of research into bone-muscle crosstalk. Implications for this area of research are far reaching and include understanding skeletal muscle weakness in cancer, osteoporosis, cachexia, rare diseases of bone, and aging. RECENT FINDINGS: Recent research shows that bone-derived factors can lead to changes in the skeletal muscle. These changes can either be anabolic or catabolic, and we focus this review on the role of TGFß in driving oxidative stress and skeletal muscle weakness in the setting of osteolytic cancer in the bone. The bone is a preferred site for breast cancer metastasis and leads to pathological bone loss. Osteolytic cancer in the bone leads to release of TGFß from the bone via osteoclast-mediated bone destruction. Our appreciation of crosstalk between the muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGFß as a cause of skeletal muscle weakness in the setting of osteolytic cancer in the bone. Multiple points of potential therapeutic intervention are discussed.


Assuntos
Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Ósseas/secundário , Humanos , Transdução de Sinais
4.
Oncotarget ; 8(5): 8406-8419, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28039445

RESUMO

Aromatase inhibitors (AIs) cause muscle weakness, bone loss, and joint pain in up to half of cancer patients. Preclinical studies have demonstrated that increased osteoclastic bone resorption can impair muscle contractility and prime the bone microenvironment to accelerate metastatic growth. We hypothesized that AI-induced bone loss could increase breast cancer progression in bone and exacerbate muscle weakness associated with bone metastases. Female athymic nude mice underwent ovariectomy (OVX) or sham surgery and were treated with vehicle or AI (letrozole; Let). An OVX-Let group was then further treated with bisphosphonate (zoledronic acid; Zol). At week three, trabecular bone volume was measured and mice were inoculated with MDA-MB-231 cells into the cardiac ventricle and followed for progression of bone metastases. Five weeks after tumor cell inoculation, tumor-induced osteolytic lesion area was increased in OVX-Let mice and reduced in OVX-Let-Zol mice compared to sham-vehicle. Tumor burden in bone was increased in OVX-Let mice relative to sham-vehicle and OVX-Let-Zol mice. At the termination of the study, muscle-specific force of the extensor digitorum longus muscle was reduced in OVX-Let mice compared to sham-vehicle mice, however, the addition of Zol improved muscle function. In summary, AI treatment induced bone loss and skeletal muscle weakness, recapitulating effects observed in cancer patients. Prevention of AI-induced osteoclastic bone resorption using a bisphosphonate attenuated the development of breast cancer bone metastases and improved muscle function in mice. These findings highlight the bone microenvironment as a modulator of tumor growth locally and muscle function systemically.


Assuntos
Antineoplásicos Hormonais/toxicidade , Inibidores da Aromatase/toxicidade , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Força Muscular/efeitos dos fármacos , Debilidade Muscular/induzido quimicamente , Músculo Esquelético/efeitos dos fármacos , Nitrilas/toxicidade , Osteólise/induzido quimicamente , Receptores de Estrogênio/deficiência , Triazóis/toxicidade , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Difosfonatos/farmacologia , Progressão da Doença , Estradiol/sangue , Feminino , Humanos , Imidazóis/farmacologia , Letrozol , Camundongos Endogâmicos BALB C , Camundongos Nus , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Osteólise/patologia , Osteólise/prevenção & controle , Ovariectomia , Fatores de Tempo , Carga Tumoral , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico
5.
Artigo em Inglês | MEDLINE | ID: mdl-29312148

RESUMO

Muscle weakness and cachexia are significant paraneoplastic syndromes of many advanced cancers. Osteolytic bone metastases are common in advanced breast cancer and are a major contributor to decreased survival, performance, and quality of life for patients. Pathologic fracture caused by osteolytic cancer in bone (OCIB) leads to a significant (32%) increased risk of death compared to patients without fracture. Since muscle weakness is linked to risk of falls which are a major cause of fracture, we have investigated skeletal muscle response to OCIB. Here, we show that a syngeneic mouse model of OCIB (4T1 mammary tumor cells) leads to cachexia and skeletal muscle weakness associated with oxidation of the ryanodine receptor and calcium (Ca2+) release channel (RyR1). Muscle atrophy follows known pathways via both myostatin signaling and expression of muscle-specific ubiquitin ligases, atrogin-1 and MuRF1. We have identified a mechanism for skeletal muscle weakness due to increased oxidative stress on RyR1 via NAPDH oxidases [NADPH oxidase 2 (Nox2) and NADPH oxidase 4 (Nox4)]. In addition, SMAD3 phosphorylation is higher in muscle from tumor-bearing mice, a critical step in the intracellular signaling pathway that transmits TGFß signaling to the nucleus. This is the first time that skeletal muscle weakness has been described in a syngeneic model of OCIB and represents a unique model system in which to study cachexia and changes in skeletal muscle.

6.
Circ Res ; 120(2): 296-311, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27834190

RESUMO

RATIONALE: The vascular adventitia is a complex layer of the vessel wall consisting of vasa vasorum microvessels, nerves, fibroblasts, immune cells, and resident progenitor cells. Adventitial progenitors express the stem cell markers, Sca1 and CD34 (adventitial sca1-positive progenitor cells [AdvSca1]), have the potential to differentiate in vitro into multiple lineages, and potentially contribute to intimal lesions in vivo. OBJECTIVE: Although emerging data support the existence of AdvSca1 cells, the goal of this study was to determine their origin, degree of multipotency and heterogeneity, and contribution to vessel remodeling. METHODS AND RESULTS: Using 2 in vivo fate-mapping approaches combined with a smooth muscle cell (SMC) epigenetic lineage mark, we report that a subpopulation of AdvSca1 cells is generated in situ from differentiated SMCs. Our data establish that the vascular adventitia contains phenotypically distinct subpopulations of progenitor cells expressing SMC, myeloid, and hematopoietic progenitor-like properties and that differentiated SMCs are a source to varying degrees of each subpopulation. SMC-derived AdvSca1 cells exhibit a multipotent phenotype capable of differentiating in vivo into mature SMCs, resident macrophages, and endothelial-like cells. After vascular injury, SMC-derived AdvSca1 cells expand in number and are major contributors to adventitial remodeling. Induction of the transcription factor Klf4 in differentiated SMCs is essential for SMC reprogramming in vivo, whereas in vitro approaches demonstrate that Klf4 is essential for the maintenance of the AdvSca1 progenitor phenotype. CONCLUSIONS: We propose that generation of resident vascular progenitor cells from differentiated SMCs is a normal physiological process that contributes to the vascular stem cell pool and plays important roles in arterial homeostasis and disease.


Assuntos
Túnica Adventícia/citologia , Túnica Adventícia/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Feminino , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos de Músculo Liso/fisiologia , Gravidez
7.
Atherosclerosis ; 257: 38-46, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28038380

RESUMO

BACKGROUND AND AIMS: Mutations in the 5'-nucleotidase ecto (NT5E) gene that encodes CD73, a nucleotidase that converts AMP to adenosine, are linked to arterial calcification. However, the role of purinergic receptor signaling in the pathology of intimal calcification is not well understood. In this study, we examined whether extracellular nucleotides acting via P2Y2 receptor (P2Y2R) modulate arterial intimal calcification, a condition highly correlated with cardiovascular morbidity. METHODS: Apolipoprotein E, P2Y2R double knockout mice (ApoE-/-P2Y2R-/-) were used to determine the effect of P2Y2R deficiency on vascular calcification in vivo. Vascular smooth muscle cells (VSMC) isolated from P2Y2R-/- mice grown in high phosphate medium were used to assess the role of P2Y2R in the conversion of VSMC into osteoblasts. Luciferase-reporter assays were used to assess the effect of P2Y2R on the transcriptional activity of Runx2. RESULTS: P2Y2R deficiency in ApoE-/- mice caused extensive intimal calcification despite a significant reduction in atherosclerosis and macrophage plaque content. The ectoenzyme apyrase that degrades nucleoside di- and triphosphates accelerated high phosphate-induced calcium deposition in cultured VSMC. Expression of P2Y2R inhibits calcification in vitro inhibited the osteoblastic trans-differentiation of VSMC. Mechanistically, expression of P2Y2R inhibited Runx2 transcriptional activation of an osteocalcin promoter driven luciferase reporter gene. CONCLUSIONS: This study reveals a role for vascular P2Y2R as an inhibitor of arterial intimal calcification and provides a new mechanistic insight into the regulation of the osteoblastic trans-differentiation of SMC through P2Y2R-mediated Runx2 antagonism. Given that calcification of atherosclerotic lesions is a significant clinical problem, activating P2Y2R may be an effective therapeutic approach for treatment or prevention of vascular calcification.


Assuntos
Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Calcificação Vascular/prevenção & controle , 5'-Nucleotidase/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Transdiferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Predisposição Genética para Doença , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/genética , Osteocalcina/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Receptores Purinérgicos P2Y2/deficiência , Receptores Purinérgicos P2Y2/genética , Transfecção , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
8.
Semin Cell Dev Biol ; 49: 24-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26593325

RESUMO

Our appreciation of crosstalk between muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. While the recent identification of new 'myokines' has shifted some focus to the role of muscle in this partnership, bone-derived factors and their effects on skeletal muscle should not be overlooked. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGF-ß as a cause of skeletal muscle weakness in the setting of cancer-induced bone destruction. Oxidation of the ryanodine receptor/calcium release channel (RyR1) in skeletal muscle occurs via a TGF-ß-Nox4-RyR1 axis and leads to calcium mishandling and decreased muscle function. Multiple points of potential therapeutic intervention were identified, from preventing the bone destruction to stabilizing the RYR1 calcium channel. This new data reinforces the concept that bone can be an important source of signaling factors in pathphysiological settings.


Assuntos
Osso e Ossos/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Sinalização do Cálcio , Comunicação Celular , Humanos , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Estresse Oxidativo , Fator de Crescimento Transformador beta/fisiologia
9.
Proc Natl Acad Sci U S A ; 111(23): 8673-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912186

RESUMO

The bone marrow environment is among the most hypoxic in the body, but how hypoxia affects bone formation is not known. Because low oxygen tension stabilizes hypoxia-inducible factor alpha (HIFα) proteins, we have investigated the effect of expressing a stabilized form of HIF1α in osteoblast precursors. Brief stabilization of HIF1α in SP7-positive cells in postnatal mice dramatically stimulated cancellous bone formation via marked expansion of the osteoblast population. Remarkably, concomitant deletion of vascular endothelial growth factor A (VEGFA) in the mouse did not diminish bone accrual caused by HIF1α stabilization. Thus, HIF1α-driven bone formation is independent of VEGFA up-regulation and increased angiogenesis. On the other hand, HIF1α stabilization stimulated glycolysis in bone through up-regulation of key glycolytic enzymes including pyruvate dehydrogenase kinase 1 (PDK1). Pharmacological inhibition of PDK1 completely reversed HIF1α-driven bone formation in vivo. Thus, HIF1α stimulates osteoblast formation through direct activation of glycolysis, and alterations in cellular metabolism may be a broadly applicable mechanism for regulating cell differentiation.


Assuntos
Glicólise/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteogênese/fisiologia , Regulação para Cima , Animais , Western Blotting , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Hipóxia Celular , Feminino , Glicólise/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Dev Biol ; 383(2): 307-20, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24016759

RESUMO

The epicardium and coronary vessels originate from progenitor cells in the proepicardium. Here we show that Tbx18, a T-box family member highly expressed in the proepicardium, controls critical early steps in coronary development. In Tbx18(-/-) mouse embryos, both the epicardium and coronary vessels exhibit structural and functional defects. At E12.5, the Tbx18-deficient epicardium contains protrusions and cyst-like structures overlying a disorganized coronary vascular plexus that contains ectopic structures resembling blood islands. At E13.5, the left and right coronary stems form correctly in mutant hearts. However, analysis of PECAM-1 whole mount immunostaining, distribution of SM22α(lacZ/+) activity, and analysis of coronary vascular casts suggest that defective vascular plexus remodeling produces a compromised arterial network at birth consisting of fewer distributing conduit arteries with smaller lumens and a reduced capacity to conduct blood flow. Gene expression profiles of Tbx18(-/-) hearts at E12.5 reveal altered expression of 79 genes that are associated with development of the vascular system including sonic hedgehog signaling components patched and smoothened, VEGF-A, angiopoietin-1, endoglin, and Wnt factors compared to wild type hearts. Thus, formation of coronary vasculature is responsive to Tbx18-dependent gene targets in the epicardium, and a poorly structured network of coronary conduit vessels is formed in Tbx18 null hearts due to defects in epicardial cell signaling and fate during heart development. Lastly, we demonstrate that Tbx18 possesses a SRF/CArG box dependent repressor activity capable of inhibiting progenitor cell differentiation into smooth muscle cells, suggesting a potential function of Tbx18 in maintaining the progenitor status of epicardial-derived cells.


Assuntos
Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Pericárdio/embriologia , Pericárdio/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Circulação Coronária , Vasos Coronários/patologia , Vasos Coronários/ultraestrutura , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Miócitos de Músculo Liso/metabolismo , Pericárdio/patologia , Pericárdio/ultraestrutura , Proteínas Repressoras/metabolismo , Fator de Resposta Sérica/química , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Transcrição Gênica , beta-Galactosidase/metabolismo
11.
EMBO J ; 31(2): 429-42, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22085926

RESUMO

Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/ßcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ-wide in a Wnt-dependent manner, expands, undergoes epithelial-mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro-fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/ßcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro-fibrotic Wnt1/ßcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury.


Assuntos
Fibroblastos/metabolismo , Coração/fisiologia , Infarto do Miocárdio/patologia , Pericárdio/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Proteína Wnt1/fisiologia , beta Catenina/fisiologia , Animais , Divisão Celular , Transição Epitelial-Mesenquimal , Fibrose , Regulação da Expressão Gênica , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Pericárdio/patologia , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Regulação para Cima , Proteína Wnt1/biossíntese , Proteína Wnt1/genética , Cicatrização/fisiologia
12.
Circ Res ; 108(3): 365-77, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21293008

RESUMO

Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.


Assuntos
Vasos Sanguíneos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Músculo Liso Vascular/fisiologia , Animais , Vasos Sanguíneos/citologia , Diferenciação Celular/fisiologia , Epigenômica , Humanos , Células-Tronco Mesenquimais/citologia , Músculo Liso Vascular/citologia , Regeneração/fisiologia
13.
Arterioscler Thromb Vasc Biol ; 30(12): 2575-86, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20884876

RESUMO

OBJECTIVE: Congenital heart defects represent the most common human birth defects. Even though the genetic cause of these syndromes has been linked to candidate genes, the underlying molecular mechanisms are still largely unknown. Disturbance of neural crest cell (NCC) migration into the derivatives of the pharyngeal arches and pouches can account for many of the developmental defects. The goal of this study was to investigate the function of microRNA (miRNA) in NCCs and the cardiovascular system. METHODS AND RESULTS: We deleted Dicer from the NCC lineage and showed that Dicer conditional mutants exhibit severe defects in multiple craniofacial and cardiovascular structures, many of which are observed in human neuro-craniofacial-cardiac syndrome patients. We found that cranial NCCs require Dicer for their survival and that deletion of Dicer led to massive cell death and complete loss of NCC-derived craniofacial structures. In contrast, Dicer and miRNAs were not essential for the survival of cardiac NCCs. However, the migration and patterning of these cells were impaired in Dicer knockout mice, resulting in a spectrum of cardiovascular abnormalities, including type B interrupted aortic arch, double-outlet right ventricle, and ventricular septal defect. We showed that Dicer loss of function was, at least in part, mediated by miRNA-21 (miR-21) and miRNA-181a (miR-181a), which in turn repressed the protein level of Sprouty 2, an inhibitor of Erk1/2 signaling. CONCLUSIONS: Our results uncovered a central role for Dicer and miRNAs in NCC survival, migration, and patterning in craniofacial and cardiovascular development which, when mutated, lead to congenital neuro-craniofacial-cardiac defects.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , MicroRNAs/metabolismo , Crista Neural/metabolismo , Ribonuclease III/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Morte Celular , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/patologia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genótipo , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Crista Neural/patologia , Fenótipo , Proteínas Serina-Treonina Quinases , Ribonuclease III/deficiência , Índice de Gravidade de Doença , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...