Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 256(2): 100-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142372

RESUMO

Computer aided x-ray microtomography is an increasingly popular method to investigate the structure of materials. Continuing improvements in the technique are resulting in increasingly larger data sets. The analysis of these data sets generally involves executing a static workflow for multiple samples and is generally performed manually by researchers. Executing these processes requires a significant time investment. A workflow which is able to automate the activities of the user would be useful. In this work, we have developed an automated workflow for the analysis of microtomography scanned bread dough data sets averaging 5 GB in size. Comparing the automated workflow with the manual workflow indicates a significant amount of the time spent (33% in the case of bread dough) on user interactions in manual method. Both workflows return similar results for porosity and pore frequency distribution. Finally, by implementing an automated workflow, users save the time which would be required to manually execute the workflow. This time can be spent on more productive tasks.


Assuntos
Pão/análise , Microtomografia por Raio-X/métodos , Porosidade
2.
Philos Trans A Math Phys Eng Sci ; 368(1910): 197-216, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19948551

RESUMO

The emergence of structure in reactive geofluid systems is of current interest. In geofluid systems, the fluids are supported by a porous medium whose physical and chemical properties may vary in space and time, sometimes sharply, and which may also evolve in reaction with the local fluids. Geofluids may also experience pressure and temperature conditions within the porous medium that drive their momentum relations beyond the normal Darcy regime. Furthermore, natural geofluid systems may experience forcings that are periodic in nature, or at least episodic. The combination of transient forcing, near-critical fluid dynamics and heterogeneous porous media yields a rich array of emergent geofluid phenomena that are only now beginning to be understood. One of the barriers to forward analysis in these geofluid systems is the problem of data scarcity. It is most often the case that fluid properties are reasonably well known, but that data on porous medium properties are measured with much less precision and spatial density. It is common to seek to perform an estimation of the porous medium properties by an inverse approach, that is, by expressing porous medium properties in terms of observed fluid characteristics. In this paper, we move toward such an inversion for the case of a generalized geofluid momentum equation in the context of time-periodic boundary conditions. We show that the generalized momentum equation results in frequency-domain responses that are governed by a second-order equation which is amenable to numerical solution. A stochastic perturbation approach demonstrates that frequency-domain responses of the fluids migrating in heterogeneous domains have spatial spectral densities that can be expressed in terms of the spectral densities of porous media properties.

3.
Nature ; 459(7249): 974-7, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19536262

RESUMO

The feedback between fluid migration and rock deformation in mid-crustal shear zones is acknowledged as being critical for earthquake nucleation, the initiation of subduction zones and the formation of mineral deposits. The importance of this poorly understood feedback is further highlighted by evidence for shear-zone-controlled advective flow of fluids in the ductile lower crust and the recognition that deformation-induced grain-scale porosity is a key to large-scale geodynamics. Fluid migration in the middle crust cannot be explained in terms of classical concepts. The environment is considered too hot for a dynamic fracture-sustained permeability as in the upper crust, and fluid pathways are generally too deformed to be controlled by equilibrium wetting angles that apply to hotter, deeper environments. Here we present evidence that mechanical and chemical potentials control a syndeformational porosity generation in mid-crustal shear zones. High-resolution synchrotron X-ray tomography and scanning electron microscopy observations allow us to formulate a model for fluid migration in shear zones where a permeable porosity is dynamically created by viscous grain-boundary sliding, creep cavitation, dissolution and precipitation. We propose that syndeformational fluid migration in our 'granular fluid pump' model is a self-sustained process controlled by the explicit role of the rate of entropy production of the underlying irreversible mechanical and chemical microprocesses. The model explains fluid transfer through the middle crust, where strain localization in the creep regime is required for plate tectonics, the formation of giant ore deposits, mantle degassing and earthquake nucleation. Our findings provide a key component for the understanding of creep instabilities in the middle crust.

4.
Science ; 294(5542): 578-80, 2001 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11641494

RESUMO

Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA