Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6905-6911, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38423558

RESUMO

Heteroleptic coordination cages, nonstatistically assembled from a set of matching ligands, can be obtained by mixing individual components or via cage-to-cage transformations from homoleptic precursors. Based on the latter approach, we here describe a new level of self-sorting in coordination cage systems, namely, 'heteromeric completive self-sorting'. Here, two heteroleptic assemblies of type Pd2A2B2 and Pd2A2C2, sharing one common ligand component A but differing in the other, are shown to coexist in solution. This level of self-sorting can be reached either from a statistical mixture of assemblies based on some ligands B and C or, alternatively, following a first step of integrative self-sorting giving a distinct Pd2B2C2 intermediate. While subtle enthalpic factors dictate the outcome of the self-sorting, we found that it is controllable. From a unique set of three ligands, we demonstrate the transition from strict integrative self-sorting forming a Pd2AB2C cage to heteromeric completive self-sorting to give Pd2A2B2 and Pd2A2C2 by variation of the ligand ratio. Cage-to-cage transformations were followed by NMR and MS experiments. Single crystal X-ray structures for three new heteroleptic cages were obtained, impressively highlighting the versatility of ligand A to either form a π-stacked trans-figure-of-eight arrangement in Pd2A2B2 or occupy two cis-edges in Pd2A2C2 or only a single edge in Pd2AB2C. This study paves the way toward the control of heteroleptic cage populations in a systems chemistry context with emerging features such as chemical information processing, adaptive guest selectivity, or stimuli-responsive catalytic action.

2.
J Am Chem Soc ; 145(46): 25365-25371, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37960849

RESUMO

Azulene, a blue structural isomer of naphthalene, is introduced as the backbone for a new family of Pd(II)-based self-assemblies. Three organic ligands, equipped with varying donor groups, produce three [Pd2L4] cages of different cavity dimensions. Unexpectedly, the addition of organic disulfonate guests to the smallest lantern-shaped cage (featuring pyridine donors) led to a rapid and quantitative transformation to a distorted-tetrahedral [Pd4L8] species. On the contrary, [Pd2L4] cages formed from ligands with isoquinoline donors either just encapsulated the guests or showed no interaction. The tetrahedral species could be fully reverted back to its original [Pd2L4] topology by capturing the guest by another, stronger binding [Pd2L'4] coordination cage, narcissistically self-sorting from the first cage. The azulenes, serving as colored hydrocarbon backbones of minimal atom count, allow one to follow cage assembly and guest-induced transformation by the naked eye. Furthermore, we propose that their peculiar electronic structure influences the system's assembly behavior.

3.
Angew Chem Int Ed Engl ; 62(40): e202308288, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37459561

RESUMO

A strategy to engineer the stacking of diketopyrrolopyrrole (DPP) dyes based on non-statistical metallosupramolecular self-assembly is introduced. For this, the DPP backbone is equipped with nitrogen-based donors that allow for different discrete assemblies to be formed upon the addition of Pd(II), distinguished by the number of π-stacked chromophores. A Pd3 L6 three-ring, a heteroleptic Pd2 L2 L'2 ravel composed of two crossing DPPs (flanked by two carbazoles), and two unprecedented self-penetrated motifs (a Pd2 L3 triple and a Pd2 L4 quadruple stack), were obtained and systematically investigated. With increasing counts of stacked chromophores, UV/Vis absorptions red-shift and emission intensities decrease, except for compound Pd2 L2 L'2 , which stands out with an exceptional photoluminescence quantum yield of 51 %. This is extraordinary for open-shell metal containing assemblies and explainable by an intra-assembly FRET process. The modular design and synthesis of soluble multi-chromophore building blocks offers the potential for the preparation of nanodevices and materials with applications in sensing, photo-redox catalysis and optics.

4.
Angew Chem Int Ed Engl ; 60(11): 5673-5678, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245206

RESUMO

A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd2 L4 ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd2 L4 ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd3 L6 ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.

5.
Angew Chem Int Ed Engl ; 57(50): 16313-16317, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30325568

RESUMO

Chemists of all fields currently publish about 50 000 crystal structures per year, the vast majority of which are X-ray structures. We determined two molecular structures by employing electron rather than X-ray diffraction. For this purpose, an EIGER hybrid pixel detector was fitted to a transmission electron microscope, yielding an electron diffractometer. The structure of a new methylene blue derivative was determined at 0.9 Šresolution from a crystal smaller than 1×2 µm2 . Several thousand active pharmaceutical ingredients (APIs) are only available as submicrocrystalline powders. To illustrate the potential of electron crystallography for the pharmaceutical industry, we also determined the structure of an API from its pill. We demonstrate that electron crystallography complements X-ray crystallography and is the technique of choice for all unsolved cases in which submicrometer-sized crystals were the limiting factor.

6.
Angew Chem Int Ed Engl ; 57(41): 13652-13656, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-29901844

RESUMO

A series of metal-mediated cages, having multiple cavities, was synthesized from PdII cations and tris- or tetrakis-monodentate bridging ligands and characterized by NMR spectroscopy, mass spectrometry, and X-ray methods. The peanut-shaped [Pd3 L14 ] cage deriving from the tris-monodentate ligand L1 could be quantitatively converted into its interpenetrated [5Cl@Pd6 L18 ] dimer featuring a linear {[Pd-Cl-]5 Pd} stack as an unprecedented structural motif upon addition of chloride anions. Small-angle neutron scattering (SANS) experiments showed that the cigar-shaped assembly with a length of 3.7 nm aggregates into mono-layered discs of 14 nm diameter via solvophobic interactions between the hexyl sidechains. The hepta-cationic [5Cl@Pd6 L18 ] cage was found to interact with polyanionic oligonucleotide double-strands under dissolution of the aggregates in water, rendering the compound class interesting for applications based on non-covalent DNA binding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...