Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745366

RESUMO

Adverse social determinants of health (aSDoH) are associated with obesity and related comorbidities like diabetes, cardiovascular disease, and cancer. Obesity is also associated with natural killer cell (NK) dysregulation, suggesting a potential mechanistic link. Therefore, we measured NK phenotypes and function in a cohort of African-American (AA) women from resource-limited neighborhoods. Obesity was associated with reduced NK cytotoxicity and a shift towards a regulatory phenotype. In vitro, LDL promoted NK dysfunction, implicating hyperlipidemia as a mediator of obesity-related immune dysregulation. Dual specific phosphatase 1 (DUSP1) was induced by LDL and was upregulated in NK cells from subjects with obesity, implicating DUSP1 in obesity-mediated NK dysfunction. In vitro, DUSP1 repressed LAMP1/CD107a, depleting NK cells of functional lysosomes to prevent degranulation and cytokine secretion. Together, these data provide novel mechanistic links between aSDoH, obesity, and immune dysregulation that could be leveraged to improve outcomes in marginalized populations.

2.
Sci Adv ; 9(1): eade8272, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598976

RESUMO

Spleen tyrosine kinase (SYK) is a previously unidentified therapeutic target that inhibits neutrophil and macrophage activation in coronavirus disease 2019 (COVID-19). Fostamatinib, a SYK inhibitor, was studied in a phase 2 placebo-controlled randomized clinical trial and was associated with improvements in many secondary end points related to efficacy. Here, we used a multiomic approach to evaluate cellular and soluble immune mediator responses of patients enrolled in this trial. We demonstrated that SYK inhibition was associated with reduced neutrophil activation, increased circulation of mature neutrophils (CD10+CD33-), and decreased circulation of low-density granulocytes and polymorphonuclear myeloid-derived suppressor cells (HLA-DR-CD33+CD11b-). SYK inhibition was also associated with normalization of transcriptional activity in circulating monocytes relative to healthy controls, an increase in frequency of circulating nonclassical and HLA-DRhi classical monocyte populations, and restoration of interferon responses. Together, these data suggest that SYK inhibition may mitigate proinflammatory myeloid cellular and soluble mediator responses thought to contribute to immunopathogenesis of severe COVID-19.


Assuntos
COVID-19 , Humanos , Quinase Syk , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Antígenos HLA-DR , Homeostase
3.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35135865

RESUMO

BACKGROUND: Adoptive transfer of natural killer (NK) cells with augmented antibody-dependent cellular cytotoxicity (ADCC) capabilities and resistance to CD38 targeting has the potential to enhance the clinical anti-myeloma activity of daratumumab (DARA). Therefore, we sought to develop an efficient CRISPR/Cas9-based gene editing platform to disrupt CD38 expression (CD38 knockout (KO)) in ex vivo expanded NK cells and simultaneously arm CD38KO NK cells with a high-affinity CD16 (CD16-158V) receptor. METHODS: CD38KO human NK cells were generated using Cas9 ribonucleoprotein complexes. The platform was expanded by incorporating messenger RNA (mRNA) transfection of CD38KO NK cells and targeted gene insertion at the CD38 locus to mediate gene knockin (KI). The capacity of these gene-edited NK cells to persist and mediate ADCC in the presence of DARA was tested in vitro and in a MM.1S xenograft mouse model. RESULTS: Highly efficient CD38 gene disruption was achieved in ex vivo expanded NK cells without affecting their proliferative or functional capacity. CD38 KO conferred resistance to DARA-induced NK cell fratricide, enabling persistence and augmented ADCC against myeloma cell lines in the presence of DARA in vitro and in a MM.1S xenograft mouse model. CD38KO NK cells could be further modified by transfection with mRNA encoding a CD16-158V receptor, resulting in augmented DARA-mediated ADCC. Finally, we observed that a homology-directed repair template targeted to the CD38 locus facilitated an efficient 2-in-1 CD38 KO coupled with KI of a truncated CD34 reporter and CD16-158V receptor, with CD38KO/CD16KI NK cells demonstrating a further enhancement of DARA-mediated ADCC both in vitro and in vivo. CONCLUSIONS: Adoptive immunotherapy using ex vivo expanded CD38KO/CD16KI NK cells has the potential to boost the clinical efficacy of DARA. By incorporating complementary genetic engineering strategies into a CD38 KO manufacturing platform, we generated NK cells with substantially augmented CD38-directed antitumor activity, establishing a strong rationale for exploring this immunotherapy strategy in the clinic.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Sistemas CRISPR-Cas/imunologia , Edição de Genes/métodos , Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Luciferases de Vaga-Lume , Camundongos , Camundongos Endogâmicos NOD , Transfecção
4.
Clin Infect Dis ; 75(1): e491-e498, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467402

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) requiring hospitalization is characterized by robust antibody production, dysregulated immune response, and immunothrombosis. Fostamatinib is a novel spleen tyrosine kinase inhibitor that we hypothesize will ameliorate Fc activation and attenuate harmful effects of the anti-COVID-19 immune response. METHODS: We conducted a double-blind, randomized, placebo-controlled trial in hospitalized adults requiring oxygen with COVID-19 where patients receiving standard of care were randomized to receive fostamatinib or placebo. The primary outcome was serious adverse events by day 29. RESULTS: A total of 59 patients underwent randomization (30 to fostamatinib and 29 to placebo). Serious adverse events occurred in 10.5% of patients in the fostamatinib group compared with 22% in placebo (P = .2). Three deaths occurred by day 29, all receiving placebo. The mean change in ordinal score at day 15 was greater in the fostamatinib group (-3.6 ±â€…0.3 vs -2.6 ±â€…0.4, P = .035) and the median length in the intensive care unit was 3 days in the fostamatinib group vs 7 days in placebo (P = .07). Differences in clinical improvement were most evident in patients with severe or critical disease (median days on oxygen, 10 vs 28, P = .027). There were trends toward more rapid reductions in C-reactive protein, D-dimer, fibrinogen, and ferritin levels in the fostamatinib group. CONCLUSION: For COVID-19 requiring hospitalization, the addition of fostamatinib to standard of care was safe and patients were observed to have improved clinical outcomes compared with placebo. These results warrant further validation in larger confirmatory trials. CLINICAL TRIALS REGISTRATION: Clinicaltrials.gov, NCT04579393.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Aminopiridinas , Método Duplo-Cego , Hospitalização , Humanos , Morfolinas , Oxazinas/uso terapêutico , Oxigênio , Piridinas/uso terapêutico , Pirimidinas , SARS-CoV-2 , Resultado do Tratamento
5.
Clin Transl Immunology ; 10(10): e1346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631057

RESUMO

OBJECTIVE: KIR and NKG2A receptors educate human NK cells to stay responsive to cells with diminished HLA class I. Here, we addressed whether the HLA class I-binding receptor LIR-1 (LILRB1/ILT2/CD85j), which is widely expressed on human NK cells, can mediate education and contribute to antitumor functions of NK cells. METHODS: Healthy donor NK cells either unstimulated, overnight cytokine-activated or ex vivo-expanded were used to target human cell lines. Phenotype and function were analysed using flow cytometry and 51Cr-release assays. RESULTS: We found that the inhibitory receptor LIR-1 can mediate NK cell education under specific conditions. This novel finding was exclusive to expanded NK cells and further characterisation of the cells revealed high expression of granzyme B and DNAM-1, which both previously have been linked to NK cell education. Corroborating the rheostat education model, LIR-1 co-expression with an educating KIR further increased the responsiveness of expanded NK cells. Inversely, antibody masking of LIR-1 decreased the responsiveness. LIR-1+ expanded NK cells displayed high intrinsic ADCC that, in contrast to KIR and NKG2A, was not inhibited by HLA class I. CONCLUSION: These findings identify a unique NK cell subset attractive for adoptive cell therapy to treat cancer. Given that LIR-1 binds most HLA class I molecules, this subset may be explored in both autologous and allogeneic settings to innately reject HLA class I- tumor cells as well as HLA class I+ target cells when combined with antitumor antibodies. Further studies are warranted to address the potential of this subset in vivo.

6.
medRxiv ; 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34268520

RESUMO

SARS-CoV-2 mRNA vaccines are highly effective, although weak antibody responses are seen in some individuals with correlates of immunity that remain poorly understood. Here we longitudinally dissected antibody, plasmablast, and memory B cell (MBC) responses to the two-dose Moderna mRNA vaccine in SARS-CoV-2-uninfected adults. Robust, coordinated IgA and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses, but earlier and more intensely after dose two. Distinct antigen-specific MBC populations also emerged post-vaccination with varying kinetics. We identified antigen non-specific pre-vaccination MBC and post-vaccination plasmablasts after dose one and their spike-specific counterparts early after dose two that correlated with subsequent antibody levels. These baseline and response signatures can thus provide early indicators of serological efficacy and explain response variability in the population.

7.
Br J Haematol ; 193(5): 951-960, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33993466

RESUMO

Umbilical cord blood (UCB) transplantation is a potentially curative treatment for patients with refractory severe aplastic anaemia (SAA), but has historically been associated with delayed engraftment and high graft failure and mortality rates. We conducted a prospective phase 2 trial to assess outcome of an allogeneic transplant regimen that co-infused a single UCB unit with CD34+ -selected cells from a haploidentical relative. Among 29 SAA patients [including 10 evolved to myelodysplastic syndrome (MDS)] who underwent the haplo cord transplantation (median age 20 years), 97% had neutrophil recovery (median 10 days), and 93% had platelet recovery (median 32 days). Early myeloid engraftment was from the haplo donor and was gradually replaced by durable engraftment from UCB in most patients. The cumulative incidences of grade II-IV acute and chronic graft-versus-host disease (GVHD) were 21% and 41%, respectively. With a median follow-up of 7·5 years, overall survival was 83% and GVHD/relapse-free survival was 69%. Patient- and transplant-related factors had no impact on engraftment and survival although transplants with haplo-versus-cord killer-cell immunoglobulin-like receptor (KIR) ligand incompatibility had delayed cord engraftment. Our study shows haplo cord transplantation is associated with excellent engraftment and long-term outcome, providing an alternative option for patients with refractory SAA and hypoplastic MDS who lack human leucocyte antigen (HLA)-matched donors.


Assuntos
Anemia Aplástica , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas , Adolescente , Adulto , Anemia Aplástica/sangue , Anemia Aplástica/mortalidade , Anemia Aplástica/terapia , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Seguimentos , Doença Enxerto-Hospedeiro/sangue , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Incidência , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia , Contagem de Plaquetas , Estudos Prospectivos , Taxa de Sobrevida , Transplante Haploidêntico
8.
Mol Ther Methods Clin Dev ; 20: 559-571, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33665226

RESUMO

Transduction of primary human natural killer (NK) cells with lentiviral vectors has historically been challenging. We sought to evaluate multiple parameters to optimize lentiviral transduction of human peripheral blood NK cells being expanded to large numbers using a good manufacturing practice (GMP)-compliant protocol that utilizes irradiated lymphoblastoid (LCL) feeder cells. Although prestimulation of NK cells with interleukin (IL)-2 for 2 or more days facilitated transduction with vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped lentivirus, there was a subsequent impairment in the capacity of transduced NK cells to proliferate when stimulated with LCL feeder cells. In contrast, incubation of human NK cells with LCL feeder cells plus IL-2 before transduction in the presence of the TBK1 inhibitor BX795 resulted in efficient lentiviral integration (mean of 23% transgene+ NK cells) and successful subsequent proliferation of the transduced cells. Investigation of multiple internal promoter sequences within the same lentiviral vector revealed differences in percentage and level of transgene expression per NK cell. Bicistronic lentiviral vectors encoding both GFP and proteins suitable for the isolation of transduced cells with magnetic beads led to efficient transgene expression in NK cells. The optimized approaches described herein provide a template for protocols that generate large numbers of fully functional and highly purified lentivirus-transduced NK cells for clinical trials.

9.
Cancers (Basel) ; 13(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669611

RESUMO

A growing number of natural killer (NK) cell-based immunotherapy trials utilize ex vivo expansion to grow and activate allogenic and autologous NK cells prior to administration to patients with malignancies. Recent data in both murine and macaque models have shown that adoptively infused ex vivo expanded NK cells have extensive trafficking into liver tissue, with relatively low levels of homing to other sites where tumors often reside, such as the bone marrow or lymph nodes. Here, we evaluated gene and surface expression of molecules involved in cellular chemotaxis in freshly isolated human NK cells compared with NK cells expanded ex vivo using two different feeder cells lines: Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) or K562 cells with membrane-bound (mb) 4-1BB ligand and interleukin (IL)-21. Expanded NK cells had altered expression in a number of genes that encode chemotactic ligands and chemotactic receptors that impact chemoattraction and chemotaxis. Most notably, we observed drastic downregulation of C-X-C chemokine receptor type 4 (CXCR4) and upregulation of C-C chemokine receptor type 5 (CCR5) transcription and phenotypic expression. clustered regularly interspaced short palindromic repeats (CRISPR) gene editing of CCR5 in expanded NK cells reduced cell trafficking into liver tissue and increased NK cell presence in the circulation following infusion into immunodeficient mice. The findings reported here show that ex vivo expansion alters multiple factors that govern NK cell homing and define a novel approach using CRISPR gene editing that reduces sequestration of NK cells by the liver.

10.
Mol Ther ; 29(1): 47-59, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33010232

RESUMO

Many investigational adoptive immunotherapy regimens utilizing natural killer (NK) cells require the administration of interleukin-2 (IL-2) or IL-15, but these cytokines cause serious dose-dependent toxicities. To reduce or preclude the necessity for IL-2 use, we investigated whether genetic engineering of NK cells to express the erythropoietin (EPO) receptor (EPOR) or thrombopoietin (TPO) receptor (c-MPL) could be used as a method to improve NK cell survival and function. Viral transduction of NK-92 cells to express EPOR or c-MPL receptors conveyed signaling via appropriate pathways, protected cells from apoptosis, augmented cellular proliferation, and increased cell cytotoxic function in response to EPO or TPO ligands in vitro. In the presence of TPO, viral transduction of primary human NK cells to express c-MPL enhanced cellular proliferation and increased degranulation and cytokine production toward target cells in vitro. In contrast, transgenic expression of EPOR did not augment the proliferation of primary NK cells. In immunodeficient mice receiving TPO, in vivo persistence of primary human NK cells genetically modified to express c-MPL was higher compared with control NK cells. These data support the concept that genetic manipulation of NK cells to express hematopoietic growth factor receptors could be used as a strategy to augment NK cell proliferation and antitumor immunity.


Assuntos
Expressão Gênica , Imunomodulação/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores da Eritropoetina/genética , Receptores de Trombopoetina/genética , Animais , Modelos Animais de Doenças , Engenharia Genética , Humanos , Imunoterapia/métodos , Camundongos , Transgenes
11.
Blood Adv ; 4(24): 6148-6156, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33351110

RESUMO

Intrabone (IB) injection of umbilical cord blood has been proposed as a potential mechanism to improve transplant engraftment and prevent graft failure. However, conventional IB techniques produce low retention of transplanted cells in the marrow. To overcome this barrier, we developed an optimized IB (OIB) injection method using low-volume, computer-controlled slow infusion that promotes cellular retention in the marrow. Here, we compare engraftment of CD34+ cells transplanted in a myeloablative rhesus macaque (RM) model using the OIB method compared with IV delivery. RM CD34+ cells obtained by apheresis were split equally for transduction with lentiviral vectors encoding either green fluorescent protein or yellow fluorescent protein reporters. Following conditioning, one marked autologous population of CD34+ cells was injected directly IB using the OIB method and the other was injected via slow IV push into the same animal (n = 3). Daily flow cytometry of blood quantified the proportion of engrafting cells deriving from each source. Marrow retention was examined using positron emission tomography/computed tomography imaging of 89Zirconium (89Zr)-oxine-labeled CD34+ cells. CD34+ cells injected via the OIB method were retained in the marrow and engrafted in all 3 animals. However, OIB-transplanted progenitor cells did not engraft any faster than those delivered IV and contributed significantly less to hematopoiesis than IV-delivered cells at all time points. Rigorous testing of our OIB delivery system in a competitive RM myeloablative transplant model showed no engraftment advantage over conventional IV infusion. Given the increased complexity and potential risks of IB vs IV approaches, our data do not support IB transplantation as a strategy to improve hematopoietic engraftment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Antígenos CD34 , Macaca mulatta , Radioisótopos , Zircônio
12.
Genes (Basel) ; 11(12)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322084

RESUMO

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated genome editing holds remarkable promise for the treatment of human genetic diseases. However, the possibility of off-target Cas9 activity remains a concern. To address this issue using clinically relevant target cells, we electroporated Cas9 ribonucleoprotein (RNP) complexes (independently targeted to two different genomic loci, the CXCR4 locus on chromosome 2 and the AAVS1 locus on chromosome 19) into human mobilized peripheral blood-derived hematopoietic stem and progenitor cells (HSPCs) and assessed the acquisition of somatic mutations in an unbiased, genome-wide manner via whole genome sequencing (WGS) of single-cell-derived HSPC clones. Bioinformatic analysis identified >20,000 total somatic variants (indels, single nucleotide variants, and structural variants) distributed among Cas9-treated and non-Cas9-treated control HSPC clones. Statistical analysis revealed no significant difference in the number of novel non-targeted indels among the samples. Moreover, data analysis showed no evidence of Cas9-mediated indel formation at 623 predicted off-target sites. The median number of novel single nucleotide variants was slightly elevated in Cas9 RNP-recipient sample groups compared to baseline, but did not reach statistical significance. Structural variants were rare and demonstrated no clear causal connection to Cas9-mediated gene editing procedures. We find that the collective somatic mutational burden observed within Cas9 RNP-edited human HSPC clones is indistinguishable from naturally occurring levels of background genetic heterogeneity.


Assuntos
Sistemas CRISPR-Cas , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 2/genética , Células Clonais , Edição de Genes , Células-Tronco Hematopoéticas , Adulto , Feminino , Loci Gênicos , Humanos , Receptores CXCR4/genética
13.
Br J Haematol ; 189(3): 551-558, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32086819

RESUMO

Heavily transfused patients frequently develop human leukocyte antigen (HLA) allo-immunization resulting in platelet transfusion refractoriness and a high risk for life-threatening thrombocytopenia. Data suggest complement activation leading to the destruction of platelets bound by HLA allo-antibodies may play a pathophysiologic role in platelet refractoriness. Here we conducted a pilot trial to investigate the use of eculizumab, a monoclonal antibody that binds and inhibits C5 complement, to treat platelet transfusion refractoriness in allo-immunized patients with severe thrombocytopenia. A single eculizumab infusion was administered to 10 eligible patients, with four (40%) patients overcoming platelet refractories assessed measuring the corrected platelet count increment (CCI) 10-60 min and 18-24 h post transfusion. Responding patients had a reduction in the requirement for subsequent platelet transfusions and had higher post-transfusion platelet increments for 14 days following eculizumab administration. Remarkably, three of the four responders met CCI criteria for response despite receiving HLA-incompatible platelets. Our results suggest that eculizumab has the ability to overcome platelet transfusion refractoriness in patients with broad HLA allo-immunization. This study establishes proof of principle that complement inhibition can treat platelet transfusion refractoriness, laying the foundation for a large multicentre trial to assess the overall efficacy of this approach (ClinicalTrials.gov, identifier: NCT02298933).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos HLA/imunologia , Imunização/métodos , Transfusão de Plaquetas/métodos , Adolescente , Adulto , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
14.
Clin Cancer Res ; 26(11): 2573-2581, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034075

RESUMO

PURPOSE: Trials of adoptive natural killer (NK)-cell immunotherapy for hematologic malignancies have thus far shown only marginal effects, despite the potent in vitro antitumor activity of these cells. Homing of infused cells to tumor microenvironments is critical for efficacy, but has not been well characterized. We established a novel method to track and quantify the distribution of adoptively transferred NK cells using rhesus macaques (RM) as a clinically relevant preclinical model. EXPERIMENTAL DESIGN: RM NK cells were expanded ex vivo for 14-21 days, labeled with 89Zr-oxine complex, and assessed for phenotype, function, and survival. Trafficking of 89Zr-labeled ex vivo-expanded NK cells infused into RMs was monitored and quantitated by serial positron emission tomography (PET)/CT (n = 3, 2.05 ± 0.72 MBq, 23.5 ± 2.0 × 106 NK cells/kg) and compared with that of 89Zr-labeled nonexpanded NK cells, apoptotic NK cells, and hematopoietic stem and progenitor cells (HSPC). RESULTS: NK cells retained sufficient levels of 89Zr for accurate in vivo tracking for 7 days. 89Zr labeling did not alter cellular phenotype, viability, or function. PET/CT showed NK cells initially localized in the lungs, followed by their migration to the liver, spleen, and, at low levels, bone marrow. One day following transfer, only 3.4% of infused NK cells localized to the BM versus 22.1% of HSPCs. No clinical side effects were observed, and dosimetry analysis indicated low organ radioexposures of 6.24 mSv/MBq (spleen) or lower. CONCLUSIONS: These data support translation of this technique to humans to track the distribution of adoptively infused cells and to develop novel techniques to improve immune cell homing to tumor microenvironments.


Assuntos
Rastreamento de Células/métodos , Transplante de Células/métodos , Células Matadoras Naturais/citologia , Pulmão/metabolismo , Monitorização Fisiológica/métodos , Oxiquinolina/química , Radioisótopos/farmacocinética , Zircônio/farmacocinética , Animais , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Macaca mulatta , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Distribuição Tecidual , Zircônio/química
15.
Front Immunol ; 10: 1262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231387

RESUMO

Adoptive transfer of natural killer (NK) cells can induce remission in patients with relapsed/refractory leukemia and myeloma. However, to date, clinical efficacy of NK cell immunotherapy has been limited to a sub-fraction of patients. Here we show that steps incorporated in the ex vivo manipulation/production of NK cell products used for adoptive infusion, such as over-night IL-2 activation or cryopreservation followed by ex vivo expansion, drastically decreases NK cell surface expression of the bone marrow (BM) homing chemokine receptor CXCR4. Reduced CXCR4 expression was associated with dampened in vitro NK cell migration toward its cognate ligand stromal-derived factor-1α (SDF-1α). NK cells isolated from patients with WHIM syndrome carry gain-of-function (GOF) mutations in CXCR4 (CXCR4R334X). Compared to healthy donors, we observed that NK cells expanded from WHIM patients have similar surface levels of CXCR4 but have a much stronger propensity to home to BM compartments when adoptively infused into NOD-scid IL2Rgammanull (NSG) mice. Therefore, in order to augment the capacity of adoptively infused NK cells to home to the BM, we genetically engineered ex vivo expanded NK cells to express the naturally occurring GOF CXCR4R334X receptor variant. Transfection of CXCR4R334X-coding mRNA into ex vivo expanded NK cells using a clinically applicable method consistently led to an increase in cell surface CXCR4 without altering NK cell phenotype, cytotoxic function, or compromising NK cell viability. Compared to non-transfected and wild type CXCR4-coding mRNA transfected counterparts, CXCR4R334X-engineered NK cells had significantly greater chemotaxis toward SDF-1α in vitro. Importantly, expression of CXCR4R334X on expanded NK cells resulted in significantly greater BM homing following adoptive transfer into NSG mice compared to non-transfected NK cell controls. Collectively, these data suggest up-regulation of cell surface CXCR4R334X on ex vivo expanded NK cells via mRNA transfection represents a novel approach to improve homing and target NK cell-based immunotherapies to BM where hematological malignancies reside.


Assuntos
Medula Óssea/imunologia , Mutação com Ganho de Função , Células Matadoras Naturais/imunologia , RNA Mensageiro/imunologia , Receptores CXCR4/imunologia , Transfecção , Substituição de Aminoácidos , Animais , Xenoenxertos , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/transplante , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Mensageiro/genética , Receptores CXCR4/genética
16.
Oncoimmunology ; 8(2): e1534664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713790

RESUMO

Although the proteasome inhibitor bortezomib has significantly improved the survival of patients with multiple myeloma (MM), the disease remains fatal as most patients eventually develop progressive disease. Recent data indicate that MM cells can evade bortezomib-induced cell death by undergoing autophagy as a consequence of endoplasmatic reticulum (ER)-stress induced by proteasome inhibition. Here we show that bortezomib sensitizes MM cells to NK cell killing via two distinct mechanisms: a) upregulation of the TRAIL death receptor DR5 on the surface of MM cells and b) ER-stress induced reduction of cell surface HLA-E. The latter mechanism is completely novel and was found to be exclusively controlled by the inhibitory receptor NKG2A, with NKG2A single-positive (NKG2ASP) NK cells developing a selective augmentation in tumor killing as a consequence of bortezomib-induced loss of HLA-E on the non-apoptotic MM cells. In contrast, the expression of classical HLA class I molecules remained unchanged following bortezomib exposure, diminishing the augmentation of MM killing by NK cells expressing KIR. Further, we found that feeder cell-based ex vivo expansion of NK cells increased both NK cell TRAIL surface expression and the percentage of NKG2ASP NK cells compared to unexpanded controls, substantially augmenting their capacity to kill bortezomib-treated MM cells. Based on these findings, we hypothesize that infusion of ex vivo expanded NK cells following treatment with bortezomib could eradicate MM cells that would normally evade killing through proteasome inhibition alone, potentially improving long-term survival among MM patients.

17.
Br J Haematol ; 176(6): 950-960, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28169418

RESUMO

Allogeneic haematopoietic stem cell transplantation is curative for severe aplastic anaemia (SAA) unresponsive to immunosuppressive therapy. To reduce chronic graft-versus-host disease (GVHD), which occurs more frequently after peripheral blood stem cell (PBSC) transplantation compared to bone-marrow transplantation (BMT), and to prevent graft rejection, we developed a novel partial T-cell depleted transplant that infuses high numbers of granulocyte colony-stimulating factor-mobilized CD34+ selected PBSCs combined with a BMT-equivalent dose of non-mobilized donor T-cells. Fifteen patients with refractory SAA received cyclophosphamide, anti-thymocyte globulin and fludarabine conditioning, and were transplanted with a median 8 × 106 CD34+  cells/kg and 2 × 107 non-mobilized CD3+ T-cells/kg from human leucocyte antigen-matched sibling donors. All achieved sustained engraftment with only two developing acute and two developing chronic GVHD. With a 3·5-year median follow-up, 86% of patients survived and were transfusion-independent. When compared to a retrospective cohort of 56 bone-marrow failure patients that received the identical transplant preparative regimen and GVHD prophylaxis with the exception that the allograft contained unmanipulated PBSCs, partial T-cell depleted transplant recipients had delayed donor T-cell chimerism and relative reduction of 75% in the incidence of acute grade II-IV GVHD (13% vs. 52%; P = 0·010) and of 82% in chronic GVHD (13% vs. 72%; P = 0·0004). In multivariate analysis, partial T-cell depleted transplants remained significantly associated with a reduced risk of GVHD. In conclusion, for patients with refractory SAA, this novel transplant strategy achieves excellent engraftment and survival when compared to unmanipulated PBSC transplants and dramatically reduces the incidence of both acute and chronic GVHD.


Assuntos
Anemia Aplástica/diagnóstico , Anemia Aplástica/terapia , Transplante de Células-Tronco de Sangue Periférico , Células-Tronco de Sangue Periférico/metabolismo , Linfócitos T/transplante , Adolescente , Adulto , Idoso , Antígenos CD34/metabolismo , Biomarcadores , Criança , Estudos de Coortes , Terapia Combinada , Feminino , Sobrevivência de Enxerto , Doença Enxerto-Hospedeiro/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Linfócitos T/metabolismo , Quimeras de Transplante , Transplante Homólogo , Resultado do Tratamento , Adulto Jovem
18.
Haematologica ; 102(3): 600-609, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27846612

RESUMO

Hematopoietic stem cells can be mobilized from healthy donors using single-agent plerixafor without granulocyte colony-stimulating factor and, following allogeneic transplantation, can result in sustained donor-derived hematopoiesis. However, when a single dose of plerixafor is administered at a conventional 240 µg/kg dose, approximately one-third of donors will fail to mobilize the minimally acceptable dose of CD34+ cells needed for allogeneic transplantation. We conducted an open-label, randomized trial to assess the safety and activity of high-dose (480 µg/kg) plerixafor in CD34+ cell mobilization in healthy donors. Subjects were randomly assigned to receive either a high dose or a conventional dose (240 µg/kg) of plerixafor, given as a single subcutaneous injection, in a two-sequence, two-period, crossover design. Each treatment period was separated by a 2-week minimum washout period. The primary endpoint was the peak CD34+ count in the blood, with secondary endpoints of CD34+ cell area under the curve (AUC), CD34+ count at 24 hours, and time to peak CD34+ following the administration of plerixafor. We randomized 23 subjects to the two treatment sequences and 20 subjects received both doses of plerixafor. Peak CD34+ count in the blood was significantly increased (mean 32.2 versus 27.8 cells/µL, P=0.0009) and CD34+ cell AUC over 24 hours was significantly increased (mean 553 versus 446 h cells/µL, P<0.0001) following the administration of the 480 µg/kg dose of plerixafor compared with the 240 µg/kg dose. Remarkably, of seven subjects who mobilized poorly (peak CD34+ ≤20 cells/µL) after the 240 µg/kg dose of plerixafor, six achieved higher peak CD34+ cell numbers and all achieved higher CD34+ AUC over 24 hours after the 480 µg/kg dose. No grade 3 or worse drug-related adverse events were observed. This study establishes that high-dose plerixafor can be safely administered in healthy donors and mobilizes greater numbers of CD34+ cells than conventional-dose plerixafor, which may improve CD34+ graft yields and reduce the number of apheresis procedures needed to collect sufficient stem cells for allogeneic transplantation. (ClinicalTrials.gov, identifier: NCT00322127).


Assuntos
Antígenos CD34/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/administração & dosagem , Doadores de Tecidos , Adulto , Benzilaminas , Ensaio de Unidades Formadoras de Colônias , Estudos Cross-Over , Ciclamos , Feminino , Voluntários Saudáveis , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
19.
Clin Cancer Res ; 22(21): 5211-5222, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307594

RESUMO

PURPOSE: Immune checkpoint inhibitors have recently revolutionized cancer immunotherapy. On the basis of data showing KIR-ligand mismatched natural killer (NK) cells reduce the risk of leukemia and multiple myeloma relapse following allogeneic hematopoietic stem cell transplantation, investigators have developed a checkpoint inhibition antibody that blocks KIR on NK cells. Although in vitro studies suggest the KIR2D-specific antibody IPH2101 induces KIR-ligand mismatched tumor killing by NK cells, our single-arm phase II clinical trial in patients with smoldering multiple myeloma was prematurely terminated due to lack of clinical efficacy. This study aimed at unveiling the underlying mechanisms behind the lack of clinical efficacy. EXPERIMENTAL DESIGN: Treatment-naïve patients received an intravenous infusion of 1 mg/kg IPH2101 every other month for up to a year. Peripheral blood was collected at baseline and 24 hours after first infusion, followed by weekly samples for the first month and monthly samples thereafter. NK cell phenotype and function was analyzed using high-resolution flow cytometry. RESULTS: Unexpectedly, infusion of IPH2101 resulted in rapid reduction in both NK cell responsiveness and KIR2D expression on the NK cell surface. In vitro assays revealed KIR2D molecules are removed from the surface of IPH2101-treated NK cells by trogocytosis, with reductions in NK cell function directly correlating with loss of free KIR2D surface molecules. Although IPH2101 marginally augmented the antimyeloma cytotoxicity of remaining KIR2Ddull patient NK cells, the overall response was diminished by significant contraction and reduced function of KIR2D-expressing NK cells. CONCLUSIONS: These data raise concerns that the unexpected biological events reported in this study could compromise antibody-based strategies designed at augmenting NK cell tumor killing via checkpoint inhibition. Clin Cancer Res; 22(21); 5211-22. ©2016 AACRSee related commentary by Felices and Miller, p. 5161.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Células Matadoras Naturais/efeitos dos fármacos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Receptores KIR/antagonistas & inibidores , Idoso , Anticorpos Monoclonais Humanizados , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Seguimentos , Humanos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade
20.
Front Immunol ; 7: 105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047492

RESUMO

For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...