Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 695: 149464, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38217957

RESUMO

DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.


Assuntos
Proteínas de Ligação a DNA , Endodesoxirribonucleases , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Struct Mol Biol ; 30(4): 451-462, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894693

RESUMO

RPA has been shown to protect single-stranded DNA (ssDNA) intermediates from instability and breakage. RPA binds ssDNA with sub-nanomolar affinity, yet dynamic turnover is required for downstream ssDNA transactions. How ultrahigh-affinity binding and dynamic turnover are achieved simultaneously is not well understood. Here we reveal that RPA has a strong propensity to assemble into dynamic condensates. In solution, purified RPA phase separates into liquid droplets with fusion and surface wetting behavior. Phase separation is stimulated by sub-stoichiometric amounts of ssDNA, but not RNA or double-stranded DNA, and ssDNA gets selectively enriched in RPA condensates. We find the RPA2 subunit required for condensation and multi-site phosphorylation of the RPA2 N-terminal intrinsically disordered region to regulate RPA self-interaction. Functionally, quantitative proximity proteomics links RPA condensation to telomere clustering and integrity in cancer cells. Collectively, our results suggest that RPA-coated ssDNA is contained in dynamic RPA condensates whose properties are important for genome organization and stability.


Assuntos
Proteína de Replicação A , Telômero , Proteína de Replicação A/química , Telômero/metabolismo , RNA/metabolismo , DNA de Cadeia Simples , Ligação Proteica , Replicação do DNA
3.
Mol Cell ; 83(8): 1237-1250.e15, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36917982

RESUMO

DNA double-strand breaks (DSBs) are cytotoxic genome lesions that must be accurately and efficiently repaired to ensure genome integrity. In yeast, the Mre11-Rad50-Xrs2 (MRX) complex nicks 5'-terminated DSB ends to initiate nucleolytic processing of DSBs for repair by homologous recombination. How MRX-DNA interactions support 5' strand-specific nicking and how nicking is influenced by the chromatin context have remained elusive. Using a deep sequencing-based assay, we mapped MRX nicks at single-nucleotide resolution next to multiple DSBs in the yeast genome. We observed that the DNA end-binding Ku70-Ku80 complex directed DSB-proximal nicks and that repetitive MRX cleavage extended the length of resection tracts. We identified a sequence motif and a DNA meltability profile that is preferentially nicked by MRX. Furthermore, we found that nucleosomes as well as transcription impeded MRX incisions. Our findings suggest that local DNA sequence and chromatin features shape the activity of this central DSB repair complex.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Reparo do DNA , DNA/genética
4.
Mol Cell ; 82(19): 3553-3565.e5, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070766

RESUMO

RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.


Assuntos
DNA de Cadeia Simples , Rad51 Recombinase , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
5.
Nat Commun ; 13(1): 2374, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501303

RESUMO

The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S. cerevisiae Mre11-Rad50 with or without Xrs2 forms higher-order assemblies in solution and on DNA. Rad50 mediates such oligomerization, and mutations in a conserved Rad50 beta-sheet enhance or disrupt oligomerization. We demonstrate that Mre11-Rad50-Xrs2 oligomerization facilitates foci formation, DNA damage signaling, repair, and telomere maintenance in vivo. Mre11-Rad50 oligomerization does not affect its exonuclease activity but drives endonucleolytic cleavage at multiple sites on the 5'-DNA strand near double-strand breaks. Interestingly, mutations in the human RAD50 beta-sheet are linked to hereditary cancer predisposition and our findings might provide insights into their potential role in chemoresistance.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Hidrolases Anidrido Ácido/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Curr Opin Genet Dev ; 71: 39-47, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34293660

RESUMO

DNA breaks may arise accidentally in vegetative cells or in a programmed manner in meiosis. The usage of a DNA template makes homologous recombination potentially error-free, however, recombination is not always accurate. Cells possess a remarkable capacity to tailor processing of recombination intermediates to fulfill a particular need. Vegetatively growing cells aim to maintain genome stability and therefore repair accidental breaks largely accurately, using sister chromatids as templates, into mostly non-crossovers products. Recombination in meiotic cells is instead more likely to employ homologous chromosomes as templates and result in crossovers to allow proper chromosome segregation and promote genetic diversity. Here we review models explaining the processing of recombination intermediates in vegetative and meiotic cells and its regulation, with a focus on MLH1-MLH3-dependent crossing-over during meiotic recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Cromátides , Segregação de Cromossomos/genética , Reparo do DNA/genética , Recombinação Homóloga/genética , Meiose/genética
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088835

RESUMO

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


Assuntos
Reparo de Erro de Pareamento de DNA/fisiologia , Endonucleases/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endonucleases/química , Meiose , Modelos Moleculares , Proteína 1 Homóloga a MutL/química , Proteína 1 Homóloga a MutL/genética , Proteínas MutL/química , Proteínas MutL/genética , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nucleic Acids Res ; 49(8): 4522-4533, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33823531

RESUMO

Meiotic recombination ensures proper chromosome segregation to form viable gametes and results in gene conversions events between homologs. Conversion tracts are shorter in meiosis than in mitotically dividing cells. This results at least in part from the binding of a complex, containing the Mer3 helicase and the MutLß heterodimer, to meiotic recombination intermediates. The molecular actors inhibited by this complex are elusive. The Pif1 DNA helicase is known to stimulate DNA polymerase delta (Pol δ) -mediated DNA synthesis from D-loops, allowing long synthesis required for break-induced replication. We show that Pif1 is also recruited genome wide to meiotic DNA double-strand break (DSB) sites. We further show that Pif1, through its interaction with PCNA, is required for the long gene conversions observed in the absence of MutLß recruitment to recombination sites. In vivo, Mer3 interacts with the PCNA clamp loader RFC, and in vitro, Mer3-MutLß ensemble inhibits Pif1-stimulated D-loop extension by Pol δ and RFC-PCNA. Mechanistically, our results suggest that Mer3-MutLß may compete with Pif1 for binding to RFC-PCNA. Taken together, our data show that Pif1's activity that promotes meiotic DNA repair synthesis is restrained by the Mer3-MutLß ensemble which in turn prevents long gene conversion tracts and possibly associated mutagenesis.


Assuntos
DNA Helicases/metabolismo , Conversão Gênica , Recombinação Homóloga , Meiose/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas , Proteínas MutL/genética , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Recombinantes , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Cell Rep ; 34(13): 108906, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789097

RESUMO

The Mre11-Rad50-Xrs2 (MRX) complex detects and processes DNA double-strand breaks (DSBs). Its DNA binding and processing activities are regulated by transitions between an ATP-bound state and a post-hydrolysis cutting state that is nucleolytically active. Mre11 endonuclease activity is stimulated by Sae2, whose lack increases MRX persistence at DSBs and checkpoint activation. Here we show that the Rif2 protein inhibits Mre11 endonuclease activity and is responsible for the increased MRX retention at DSBs in sae2Δ cells. We identify a Rad50 residue that is important for Rad50-Rif2 interaction and Rif2 inhibition of Mre11 nuclease. This residue is located near a Rad50 surface that binds Sae2 and is important in stabilizing the Mre11-Rad50 (MR) interaction in the cutting state. We propose that Sae2 stimulates Mre11 endonuclease activity by stabilizing a post-hydrolysis MR conformation that is competent for DNA cleavage, whereas Rif2 antagonizes this Sae2 function and stabilizes an endonuclease inactive MR conformation.


Assuntos
Quebras de DNA de Cadeia Dupla , Endonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Endonucleases/genética , Deleção de Genes , Modelos Biológicos , Mutação/genética , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
10.
DNA Repair (Amst) ; 91-92: 102869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32480356

RESUMO

When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação , Animais , Ciclo Celular , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Eucariotos/fisiologia , Humanos , Autoantígeno Ku/metabolismo , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 116(12): 5505-5513, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819891

RESUMO

To repair DNA double-strand breaks by homologous recombination, the 5'-terminated DNA strands must first be resected to produce 3' overhangs. Mre11 from Saccharomyces cerevisiae is a 3' → 5' exonuclease that is responsible for 5' end degradation in vivo. Using plasmid-length DNA substrates and purified recombinant proteins, we show that the combined exonuclease and endonuclease activities of recombinant MRX-Sae2 preferentially degrade the 5'-terminated DNA strand, which extends beyond the vicinity of the DNA end. Mechanistically, Rad50 restricts the Mre11 exonuclease in an ATP binding-dependent manner, preventing 3' end degradation. Phosphorylated Sae2, along with stimulating the MRX endonuclease as shown previously, also overcomes this inhibition to promote the 3' → 5' exonuclease of MRX, which requires ATP hydrolysis by Rad50. Our results support a model in which MRX-Sae2 catalyzes 5'-DNA end degradation by stepwise endonucleolytic DNA incisions, followed by exonucleolytic 3' → 5' degradation of the individual DNA fragments. This model explains how both exonuclease and endonuclease activities of Mre11 functionally integrate within the MRX-Sae2 ensemble to resect 5'-terminated DNA.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Instabilidade Genômica , Recombinação Homóloga , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Nat Biotechnol ; 36(3): 265-271, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431739

RESUMO

Despite the utility of CRISPR-Cas9 nucleases for genome editing, the potential for off-target activity limits their application, especially for therapeutic purposes. We developed a yeast-based assay to identify optimized Streptococcus pyogenes Cas9 (SpCas9) variants that enables simultaneous evaluation of on- and off-target activity. We screened a library of SpCas9 variants carrying random mutations in the REC3 domain and identified mutations that increased editing accuracy while maintaining editing efficiency. We combined four beneficial mutations to generate evoCas9, a variant that has fidelity exceeding both wild-type (79-fold improvement) and rationally designed Cas9 variants (fourfold average improvement), while maintaining near wild-type on-target editing efficiency (90% median residual activity). Evaluating evoCas9 on endogenous genomic loci, we demonstrated a substantially improved specificity and observed no off-target sites for four of the eight single guide RNAs (sgRNAs) tested. Finally, we showed that following long-term expression (40 d), evoCas9 strongly limited the nonspecific cleavage of a difficult-to-discriminate off-target site and fully abrogated the cleavage of two additional off-target sites.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , RNA Guia de Cinetoplastídeos/genética , Mutação , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Especificidade por Substrato
13.
Genes Dev ; 31(23-24): 2325-2330, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321179

RESUMO

DNA double-strand break repair by homologous recombination is initiated by DNA end resection, which is commenced by the Mre11-Rad50-Xrs2 complex and Sae2 in yeast. Here we report that the nonhomologous end joining factor Ku limits the exonuclease activity of Mre11 and promotes its endonuclease to cleave 5'-terminated DNA strands at break sites. Following initial endonucleolytic cleavage past the obstacle, Exo1 specifically extends the resection track, leading to the generation of long 3' overhangs that are required for homologous recombination. These experiments provide mechanistic insights into how short-range and long-range DNA end resection enzymes overcome obstacles near broken DNA ends to initiate recombination.


Assuntos
Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Exonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Animais , Clivagem do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Ativação Enzimática/genética , Exodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...