Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Microorganisms ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889084

RESUMO

Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.

2.
PLoS One ; 17(7): e0271581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862485

RESUMO

The objective was to determine differences in microRNAs (miRNAs) counts in several tissues of calves challenged with Mycoplasma bovis (M. bovis) or with M. bovis and bovine viral diarrhea virus (BVDV). Eight calves approximately 2 months of age were randomly assigned to three groups: Control (CT; n = 2), M. bovis (MB; n = 3), and Coinfection (CO; n = 3). On day 0, calves in CO were intranasally challenged with BVDV and calves in MB with M. bovis. On day 6, CO calves were challenged with M. bovis. Calves were euthanized 17 days post-challenge and serum (SER), white blood cells (WBC), liver (LIV), mesenteric (MLN) and tracheal-bronchial (TBLN) lymph nodes, spleen (SPL), and thymus (THY), were collected at necropsy. MiRNAs were extracted from each tissue from each calf. Significant (P< 0.01) differences in miRNAs expression were observed in SER, LIV, MLN, TBLN, SPL, and THY. There were no significant (P> 0.05) miRNAs in WBC. In SER, the CO group had levels of miR-1343-3p significantly higher than the CT and MB groups (P = 0.0071). In LIV and SPL, the CO group had the lowest counts for all significant miRNAs compared to CT and MB. In TBLN, the CT group had the highest counts of miRNAs, compared to MB and CO, in 14 of the 21 significant miRNAs. In THY, the CO group had the highest counts, in 4 of the 6 significant miRNAs compared to CT and MB. BVDV was associated with reduction of miRNAs in LIV, SPL, MLN, and TBLN, and M. bovis reduced counts of miRNAs in only TBLN. Measuring circulating miRNAs to assess disease condition or to develop intervention strategies to minimize respiratory diseases in cattle caused by BVDV or M. bovis will be of limited use unless an alternative approach is developed to use them as indicators of disease.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Coinfecção , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , MicroRNAs , Mycoplasma bovis , Animais , Bovinos , Diarreia , MicroRNAs/genética , Mycoplasma bovis/genética
3.
Microb Pathog ; 161(Pt A): 105159, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34454023

RESUMO

Novel live vaccine strains of Mannheimia haemolytica serotypes (St)1 and St6, expressing and secreting inactive yet immunogenic leukotoxin (leukotoxoid) fused to antigenic domains of Mycoplasma bovis Elongation Factor Tu (EFTu) and Heat shock protein (Hsp) 70 were constructed and tested for efficacy in cattle. Control calves were administered an intranasal mixture of M. haemolytica St1 and St6 mutants (ΔlktCAV4) expressing and secreting leukotoxoid while vaccinated calves were administered an intranasal mixture of like M. haemolytica St1 and St6 leukotoxoid mutants coupled to M. bovis antigens (EFTu-Hsp70-ΔlktCAV4). Both M. haemolytica strains were recovered from palatine tonsils up to 34 days post intranasal exposure. On day 35 all calves were exposed to bovine herpes virus-1, four days later lung challenged with virulent M. bovis, then euthanized up to 20 days post-challenge. Results showed all cattle produced systemic antibody responses against M. haemolytica. The vaccinates also produced systemic antibody responses to M. bovis antigen, and concurrent reductions in temperatures, middle ear infections, joint infection and lung lesions versus the control group. Notably, dramatically decreased lung loads of M. bovis were detected in the vaccinated cattle. These observations indicate that the attenuated M. haemolytica vaccine strains expressing Mycoplasma antigens can control M. bovis infection and disease symptoms in a controlled setting.


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Antígenos de Bactérias , Bovinos , Doenças dos Bovinos/prevenção & controle , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Vacinação
4.
J Clin Microbiol ; 59(7): e0004421, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33952595

RESUMO

Mycoplasma bovis is a significant pathogen of feedlot cattle, responsible for chronic pneumonia and polyarthritis syndrome (CPPS). M. bovis isolates (n = 129) were used to compare four methods of phylogenetic analysis and to determine if the isolates' genotypes were associated with phenotypes. Metadata included the health status of the animal from which an isolate was derived (healthy, diseased, or dead), anatomical location (nasopharynx, lung, or joint), feedlot, and production year (2006 to 2018). Four in silico phylogenetic typing methods were used: multilocus sequence typing (MLST), core genome MLST (cgMLST), core genome single nucleotide variant (cgSNV) analysis, and whole-genome SNV (wgSNV) analysis. Using Simpson's diversity index (D) as a proxy for resolution, MLST had the lowest resolution (D = 0.932); cgSNV (D = 0.984) and cgMLST (D = 0.987) generated comparable results; and wgSNV (D = 1.000) provided the highest resolution. Visual inspection of the minimum spanning trees found that the memberships of the clonal complexes and clades had similar structural appearances. Although MLST had the lowest resolution, this methodology was intuitive and easy to apply, and the PubMLST database facilitates the comparison of sequence types across studies. The cg methods had higher resolution than MLST, and the graphical interface software was user-friendly for nonbioinformaticians, but the proprietary software is relatively expensive. The wgSNV approach was the most robust for processing poor-quality sequence data while offering the highest resolution; however, application of its software requires specialized training. None of the four methods could associate genotypes with phenotypes.


Assuntos
Mycoplasma bovis , Animais , Canadá , Bovinos , Genótipo , Tipagem de Sequências Multilocus , Mycoplasma bovis/genética , Filogenia
5.
J Wildl Dis ; 57(3): 683-688, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984143

RESUMO

Mycoplasma bovis is a primary cause of respiratory and reproductive diseases in North American bison (Bison bison), with significant morbidity and mortality. The epidemiology of M. bovis in bison is poorly understood, hindering efforts to develop effective control measures. Our study considered whether healthy bison might be carriers of M. bovis, potentially serving as unrecognized sources of exposure. We used culture and PCR to identify mycoplasmas in the nasal cavity or tonsil of 499 healthy bison from 13 herds and two abattoirs in the US and Canada. Mycobacterium bovis was detected in 15 bison (3.0%) representing two herds in the US and one in Canada, while M. bovirhinis, M. bovoculi, M. arginini, or M. dispar was identified from an additional 155 bison (31.1%). Mycoplasma bovirhinis was identified most frequently, in 142 bison (28.5%) representing at least 10 herds. Of the 381 bison for which serum was available, only 6/13 positive for M. bovis (46.2%) tested positively with an M. bovis ELISA, as did 19/368 negative for M. bovis (5.2%). Our data reveal that M. bovis can be carried in the upper respiratory tract of healthy bison with no prior history or clinical signs of mycoplasmosis and that a large proportion of carriers may not produce detectable antibodies. Whether carriage of other mycoplasmas can trigger cross-reactive antibodies that may confound M. bovis serology requires further study.


Assuntos
Bison , Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Canadá , Bovinos , Mycoplasma , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Prevalência , Sistema Respiratório
6.
BMC Vet Res ; 17(1): 18, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413373

RESUMO

BACKGROUND: Mycoplasma bovis causes mastitis, otitis, pneumonia and arthritis in cattle and is a major contributor to bovine respiratory disease complex. Around the year 2000, it emerged as a significant threat to the health of North American bison. Whether healthy bison are carriers of M. bovis and when they were first exposed is not known. To investigate these questions we used a commercially available ELISA that detects antibodies to M. bovis to test 3295 sera collected from 1984 through 2019 from bison in the United States and Canada. RESULTS: We identified moderately to strongly seropositive bison from as long ago as the late 1980s. Average seroprevalence over the past 36 years is similar in the United States and Canada, but country-specific differences are evident when data are sorted by the era of collection. Seroprevalence in the United States during the pre-disease era (1999 and prior) was significantly higher than in Canada, but was significantly lower than in Canada during the years 2000-2019. Considering individual countries, seroprevalence in the United States since the year 2000 dropped significantly as compared to the years 1985-1999. In Canada the trend is reversed, with seroprevalence increasing significantly since the year 2000. ELISA scores for sera collected from free-ranging bison do not differ significantly from scores for sera from more intensively managed animals, regardless of the era in which they were collected. However, seroprevalence among intensively raised Canadian bison has nearly doubled since the year 2000 and average ELISA scores rose significantly. CONCLUSIONS: Our data provide the first evidence that North American bison were exposed to M. bovis many years prior to the emergence of M. bovis-related disease. Patterns of exposure inferred from these results differ in the United States and Canada, depending on the era under consideration. Our data further suggest that M. bovis may colonize healthy bison at a level sufficient to trigger antibody responses but without causing overt disease. These findings provide novel insights as to the history of M. bovis in bison and will be of value in formulating strategies to minimize the impact of mycoplasmosis on bison health and production.


Assuntos
Bison , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/isolamento & purificação , Criação de Animais Domésticos , Animais , Canadá/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Mycoplasma/epidemiologia , Prevalência , Estudos Soroepidemiológicos , Estados Unidos/epidemiologia
7.
Emerg Infect Dis ; 26(12): 2807-2814, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219651

RESUMO

Mycoplasma bovis is 1 of several bacterial pathogens associated with pneumonia in cattle. Its role in pneumonia of free-ranging ungulates has not been established. Over a 3-month period in early 2019, ¼60 free-ranging pronghorn with signs of respiratory disease died in northeast Wyoming, USA. A consistent finding in submitted carcasses was severe fibrinosuppurative pleuropneumonia and detection of M. bovis by PCR and immunohistochemical analysis. Multilocus sequence typing of isolates from 4 animals revealed that all have a deletion in 1 of the target genes, adh-1. A retrospective survey by PCR and immunohistochemical analysis of paraffin-embedded lung from 20 pronghorn that died with and without pneumonia during 2007-2018 yielded negative results. These findings indicate that a distinct strain of M. bovis was associated with fatal pneumonia in this group of pronghorn.


Assuntos
Antílopes , Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Animais Selvagens , Bovinos , Feminino , Masculino , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Estudos Retrospectivos , Wyoming/epidemiologia
8.
Microorganisms ; 8(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050495

RESUMO

: Among more than twenty species belonging to the class Mollecutes, Mycoplasma bovis is the most common cause of bovine mycoplasmosis in North America and Europe. Bovine mycoplasmosis causes significant economic loss in the cattle industry. The number of M. bovis positive herds recently has increased in North America and Europe. Since antibiotic treatment is ineffective and no efficient vaccine is available, M. bovis induced mycoplasmosis is primarily controlled by herd management measures such as the restriction of moving infected animals out of the herds and culling of infected or shedders of M. bovis. To better understand the population structure and genomic factors that may contribute to its transmission, we sequenced 147 M. bovis strains isolated from four different countries viz. USA (n = 121), Canada (n = 22), Israel (n = 3) and Lithuania (n = 1). All except two of the isolates (KRB1 and KRB8) were isolated from two host types i.e., bovine (n = 75) and bison (n = 70). We performed a large-scale comparative analysis of M. bovis genomes by integrating 103 publicly available genomes and our dataset (250 total genomes). Whole genome single nucleotide polymorphism (SNP) based phylogeny using M. agalactiae as an outgroup revealed that M. bovis population structure is composed of five different clades. USA isolates showed a high degree of genomic divergence in comparison to the Australian isolates. Based on host of origin, all the isolates in clade IV was of bovine origin, whereas majority of the isolates in clades III and V was of bison origin. Our comparative genome analysis also revealed that M. bovis has an open pangenome with a large breadth of unexplored diversity of genes. The function based analysis of autogenous vaccine candidates (n = 10) included in this study revealed that their functional diversity does not span the genomic diversity observed in all five clades identified in this study. Our study also found that M. bovis genome harbors a large number of IS elements and their number increases significantly (p = 7.8x10-6) as the genome size increases. Collectively, the genome data and the whole genome-based population analysis in this study may help to develop better understanding of M. bovis induced mycoplasmosis in cattle.

9.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499343

RESUMO

Here, we report the complete genome sequences of 12 Mycoplasma bovis isolates cultured from Canadian bison and 4 cultured from Canadian cattle. The sequences are of value for understanding the phylogenetic relationship between cattle and bison isolates and will aid in elucidating the genetic basis for virulence and host specificity.

10.
J Clin Microbiol ; 58(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32295891

RESUMO

Mycoplasma bovis causes pneumonia, pharyngitis, otitis, arthritis, mastitis, and reproductive disorders in cattle and bison. Two multilocus sequence typing (MLST) schemes have been developed for M. bovis, with one serving as the PubMLST reference method, but no comparison of the schemes has been undertaken. Although the PubMLST scheme has proven to be highly discriminatory and informative, the recent discovery of isolates missing one of the typing loci, adh-1, raises concern about its suitability for continued use. The goal of our study was to compare the performance of the two MLST schemes and identify a new reference scheme capable of fully typing all isolates. We evaluated 448 isolates from diverse geographic and anatomic sites that collectively represent cattle, bison, deer, and a goat. The discrimination indexes (DIs) for the PubMLST and the alternative scheme are 0.909 (91 sequence types [STs]) and 0.842 (77 STs), respectively. Although the PubMLST scheme outperformed the alternative scheme, the adh-1 locus must be retired from the PubMLST scheme if it is to be retained as a reference method. The DI obtained using the six remaining PubMLST loci (0.897, 79 STs) fails to reach the benchmark recommended for a reference method (0.900), mandating the addition of a seventh locus. Comparative analysis of genome sequences from the isolates used here identified the dnaA locus from the alternative scheme as the optimal replacement for adh-1 This revised scheme, which will be implemented as the new PubMLST reference method, has a DI of 0.914 and distinguishes 88 STs from the 448 isolates evaluated.


Assuntos
Doenças dos Bovinos , Cervos , Mycoplasma bovis , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Feminino , Genótipo , Cabras , Tipagem de Sequências Multilocus , Mycoplasma bovis/genética , Filogenia
11.
J Vet Diagn Invest ; 31(6): 899-904, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31510908

RESUMO

A prior multilocus sequence typing (MLST) study reported that Mycoplasma bovis isolates from North American bison possess sequence types (STs) different from those found among cattle. The 42 bison isolates evaluated were obtained in 2007 or later, whereas only 19 of 94 (~20%) of the available cattle isolates, with only 1 from North America, were from that same time. We compared STs of additional, contemporary, North American cattle isolates with those from bison, as well as isolates from 2 North American deer, all originating during the same timeframe, to more definitively assess potential strain-related host specificity and expand our understanding of the genetic diversity of M. bovis. From 307 isolates obtained between 2007 and 2017 (209 from cattle, 96 from bison, 2 from deer), we identified 49 STs, with 39 found exclusively in cattle and 5 exclusively in bison. Four STs were shared between bison and cattle isolates; one ST was found in cattle and in a deer. There was no clear association between ST and the health status of the animal of origin. An MLST-based phylogeny including 41 novel STs identified in our study reveals that STs found in bison fall within several divergent lineages that include STs found exclusively in cattle.


Assuntos
Bison , Doenças dos Bovinos/diagnóstico , Cervos , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/classificação , Animais , Canadá , Bovinos , Doenças dos Bovinos/classificação , Doenças dos Bovinos/microbiologia , Tipagem de Sequências Multilocus/veterinária , Infecções por Mycoplasma/classificação , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/genética , Estados Unidos
13.
Vet Microbiol ; 222: 55-63, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30080673

RESUMO

Mycoplasma bovis, a frequent contributor to polymicrobial respiratory disease in cattle, has recently emerged as a major health problem in North American bison. Strong circumstantial evidence suggests it can be the sole pathogen causing disease manifestations in outbreaks of mortality in bison, but direct evidence is lacking. The goal of this study was to compare clinical signs and lesions in bison and cattle experimentally infected with field isolates of M. bovis recovered from bison. Bison (n = 7) and cattle (n = 6), seronegative for anti-M. bovis IgG, were exposed intranasally to M. bovis and necropsied 4-6 weeks later. Blood and nasal swabs were collected on day 0 (before exposure), day 11 and at necropsy. Samples of lung, lymph node, liver and spleen were also collected at necropsy. The only clinical sign observed was an elevation in the core body temperature of bison during the first few weeks post-exposure. Grossly visible lesions were apparent at necropsy in the lungs of five bison and the lymph node of one bison, while none were evident in cattle. Histologic evaluation revealed moderate to severe pulmonary lesions in four bison but none in cattle. M. bovis was recovered from tissues demonstrating gross lesions and from the lymph nodes of one additional bison and two cattle. All animals seroconverted by the time of necropsy. These data provide the first direct evidence that M. bovis can be a sole or primary cause of respiratory disease in healthy bison, although the isolates used were unable to cause disease in healthy cattle.


Assuntos
Bison/microbiologia , Bovinos/microbiologia , Genótipo , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Mycoplasma bovis/patogenicidade , Animais , Doenças dos Bovinos/microbiologia , Surtos de Doenças , Fígado/microbiologia , Fígado/patologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/microbiologia , Linfonodos/patologia , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/isolamento & purificação , Virulência
14.
PLoS One ; 13(5): e0197677, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771981

RESUMO

Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobial activity against various bacterial pathogens, including several involved in bovine respiratory disease complex (BRDC) in cattle; however, such studies are yet to be performed with one important contributor to the BRDC, Mycoplasma bovis. Therefore, the goal of this study was to assess the antimicrobial activity of bovine NK-lysin-derived peptides on M. bovis. Thirty-mer synthetic peptides corresponding to the functional region helices 2 and 3 of bovine NK-lysins NK1, NK2A, NK2B, and NK2C were evaluated for killing activity on M. bovis isolates. Among four peptides, NK2A and NK2C showed the highest antimicrobial activity against the M. bovis isolates tested. All four NK-lysin peptides induced rapid plasma membrane depolarization in M. bovis at two concentrations tested. However, based on propidium iodide uptake, only NK2A and NK2C appeared capable of causing structural damage to M. bovis plasma membrane. Confocal microscopy, flow cytometry, and transmission electron microscopy further suggested NK-lysin-induced damage to the plasma membrane. Taken together, the findings in this study suggest that plasma membrane depolarization alone was insufficient to induce lethality, but disruption/permeabilization of the M. bovis plasma membrane was the cause of lethality.


Assuntos
Antibacterianos/síntese química , Mycoplasma bovis/efeitos dos fármacos , Peptídeos/síntese química , Proteolipídeos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Complexo Respiratório Bovino/tratamento farmacológico , Complexo Respiratório Bovino/microbiologia , Bovinos , Membrana Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/isolamento & purificação , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína
15.
BMC Vet Res ; 14(1): 89, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534724

RESUMO

BACKGROUND: High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating the infection-induced defense response in the host. Therefore, the objective of this study was to identify 5' transfer RNA fragments (tRF5s) associated with a serum antibody response to M. bovis in beef cattle. RESULTS: The tRF5s encoding alanine, glutamic acid, glycine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with antibody response against M. bovis. tRF5s encoding alanine, glutamine, glutamic acid, glycine, histidine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with season, which could be attributed to calf growth. There were interactions (P < 0.05) between antibody response to M. bovis and season for tRF5 encoding selenocysteine (anticodon UGA), proline (anticodon CGG), and glutamine (anticodon TTG). Selenocysteine is a rarely used amino acid that is incorporated into proteins by the opal stop codon (UGA), and its function is not well understood. CONCLUSIONS: Differential expression of tRF5s was identified between ELISA-positive and negative animals. Production of tRF5s may be associated with a host defense mechanism triggered by bacterial infection, or it may provide some advantage to a pathogen during infection of a host. Further studies are needed to establish if tRF5s could be used as a diagnostic marker of chronic exposure.


Assuntos
Formação de Anticorpos/imunologia , Mycoplasma bovis/imunologia , Pequeno RNA não Traduzido/imunologia , RNA de Transferência/imunologia , Animais , Bovinos/imunologia , Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária
16.
J Vet Diagn Invest ; 30(4): 637-641, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29595089

RESUMO

Mycoplasma bovis is an important cause of disease in cattle and bison. Because the bacterium requires specialized growth conditions, many diagnostic laboratories routinely use PCR to replace or complement conventional isolation and identification methods. A frequently used target of such assays is the uvrC gene, which has been shown to be highly conserved among isolates. We discovered that a previously described PCR putatively targeting the uvrC gene amplifies a fragment from an adjacent gene predicted to encode a lipoprotein. Comparison of the lipoprotein gene sequence from 211 isolates revealed several single nucleotide polymorphisms, 1 of which falls within a primer-binding sequence. Additionally, 3 isolates from this group were found to have a 1,658-bp transposase gene insertion within the amplified region that leads to a false-negative result. The insertion was not detected in a further 164 isolates. We found no evidence that the nucleotide substitution within the primer-binding region affects the assay sensitivity, performance, or limit of detection. Nonetheless, laboratories utilizing this method for identification of M. bovis should be aware that the region amplified may be prone to nucleotide substitutions and/or insertions relative to the sequence used for its design and that occasional false-negative results may be obtained.


Assuntos
Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase/veterinária , Polimorfismo Genético , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Sequência Conservada , Reações Falso-Negativas , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Especificidade da Espécie
17.
J Vet Diagn Invest ; 29(4): 513-521, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28578617

RESUMO

Mycoplasma bovis is emerging as an important pathogen of farmed bison in North America and is associated with high morbidity and mortality in affected herds. We developed an in-house ELISA to detect antibodies against Mycoplasma spp. in bison sera. The aims of the study were to estimate the seroprevalence against Mycoplasma spp. in bison herds with or without past history of M. bovis-associated disease, and to determine potential risk factors for seropositivity to Mycoplasma spp. in farmed bison in western Canada. A total of 858 serum samples were collected from bison >1 y of age from 19 bison herds. The individual and herd-level seroprevalence of Mycoplasma spp. was 12% and 79%, respectively. The proportion of seropositive animals was 0-41% and 0-9% for herds with or without a history of M. bovis-associated disease, respectively. Mycoplasma spp. appear to be widespread in bison in Manitoba, Saskatchewan, and Alberta. Eight of 11 herds with no history of M. bovis-associated disease were seropositive for Mycoplasma spp., which suggests that bison can be subclinically infected with Mycoplasma spp., or that infection may be underdiagnosed. Although not specific to M. bovis, the in-house ELISA developed to detect antibodies against Mycoplasma spp. may prove to be a valuable herd-level screening tool, providing insight needed for the development of appropriate prevention and control measures for Mycoplasma-related disease in bison herds.


Assuntos
Bison , Infecções por Mycoplasma/veterinária , Mycoplasma/isolamento & purificação , Animais , Canadá/epidemiologia , Feminino , Masculino , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos
18.
BMC Genomics ; 17(1): 767, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27716057

RESUMO

BACKGROUND: The genus Bordetella consists of nine species that include important respiratory pathogens such as the 'classical' species B. bronchiseptica, B. pertussis and B. parapertussis and six more distantly related and less extensively studied species. Here we analyze sequence diversity and gene content of 128 genome sequences from all nine species with focus on the evolution of virulence-associated factors. RESULTS: Both genome-wide sequence-based and gene content-based phylogenetic trees divide the genus into three species clades. The phylogenies are congruent between species suggesting genus-wide co-evolution of sequence diversity and gene content, but less correlated within species, mainly because of strain-specific presence of many different prophages. We compared the genomes with focus on virulence-associated genes and identified multiple clade-specific, species-specific and strain-specific events of gene acquisition and gene loss, including genes encoding O-antigens, protein secretion systems and bacterial toxins. Gene loss was more frequent than gene gain throughout the evolution, and loss of hundreds of genes was associated with the origin of several species, including the recently evolved human-restricted B. pertussis and B. holmesii, B. parapertussis and the avian pathogen B. avium. CONCLUSIONS: Acquisition and loss of multiple genes drive the evolution and speciation in the genus Bordetella, including large scale gene loss associated with the origin of several species. Recent loss and functional inactivation of genes, including those encoding pertussis vaccine components and bacterial toxins, in individual strains emphasize ongoing evolution.


Assuntos
Bordetella/classificação , Bordetella/genética , Evolução Molecular , Genoma Bacteriano , Fatores de Virulência/genética , Animais , Sistemas de Secreção Bacterianos/genética , Infecções por Bordetella/microbiologia , Conjuntos de Dados como Assunto , Genes Bacterianos , Variação Genética , Genômica , Genótipo , Humanos , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único
19.
Int J Syst Evol Microbiol ; 66(12): 5452-5459, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27707434

RESUMO

Bordetella hinzii is known to cause respiratory disease in poultry and has been associated with a variety of infections in immunocompromised humans. In addition, there are several reports of B. hinzii infections in laboratory-raised mice. Here we sequenced and analysed the complete genome sequences of multiple B. hinzii-like isolates, obtained from vendor-supplied C57BL/6 mice in animal research facilities on different continents, and we determined their taxonomic relationship to other Bordetella species. The whole-genome based and 16S rRNA gene based phylogenies each identified two separate clades in B. hinzii, one was composed of strains isolated from poultry, humans and a rabbit whereas the other clade was restricted to isolates from mice. Distinctly different estimated DNA-DNA hybridization values, average nucleotide identity scores, gene content, metabolic profiles and host specificity all provide compelling evidence for delineation of the two species, B. hinzii - from poultry, humans and rabbit - and Bordetella pseudohinzii sp. nov. type strain 8-296-03T (=NRRL B-59942T=NCTC 13808T) that infect mice.


Assuntos
Bordetella/classificação , Camundongos Endogâmicos C57BL/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bordetella/genética , Bordetella/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Humanos , Camundongos , Hibridização de Ácido Nucleico , Aves Domésticas , RNA Ribossômico 16S/genética , Coelhos , Análise de Sequência de DNA
20.
PLoS One ; 11(8): e0161651, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537842

RESUMO

The objective of this study was to identify microRNAs associated with a serum antibody response to Mycoplasma bovis in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected in the summer were ELISA-negative for anti-M. bovis. By the fall, eight animals were seropositive for IgG (positive group), while eight remained negative (negative group). By spring, all animals in both groups were seropositive. MicroRNAs were extracted from sera and sequenced on the Illumina HiSeq next-generation sequencer. A total of 1,374,697 sequences mapped to microRNAs in the bovine genome. Of these, 82% of the sequences corresponded to 27 microRNAs, each represented by a minimum of 10,000 sequences. There was a statistically significant interaction between ELISA response and season for bta-miR-24-3p (P = 0.0268). All sera collected at the initial summer had a similar number of copies of this microRNA (P = 0.773). In the fall, the positive group had an increased number of copies when compared to the negative group (P = 0.021), and this grew more significant by the following spring (P = 0.0001). There were 21 microRNAs associated (P< 0.05) with season. These microRNAs could be evaluated further as candidates to potentially improve productivity in cattle. The microRNAs bta-let-7b, bta-miR- 24-3p, bta-miR- 92a, and bta-miR-423-5p, were significatly associated with ELISA status (P< 0.05). These microRNAs have been recognized as playing a role in the host defense against bacteria in humans, mice, and dairy cattle. Further studies are needed to establish if these microRNAs could be used as diagnostic marker or indicator of exposure, or whether intervention strategies could be developed as an alternative to antibiotics for controlling disease due to M. bovis.


Assuntos
Formação de Anticorpos/fisiologia , Doenças dos Bovinos/imunologia , MicroRNAs/fisiologia , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Bovinos , Doenças dos Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Biblioteca Gênica , Masculino , Infecções por Mycoplasma/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...