Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 33(7): ar65, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324316

RESUMO

TGF-ß-activated kinase 1 (TAK1) plays crucial roles in innate and adaptive immune responses and is required for embryonic vascular development. However, TAK1's role in regulating vascular barrier integrity is not well defined. Here we show that endothelial TAK1 kinase function is required to maintain and repair the injured lung endothelial barrier. We observed that inhibition of TAK1 with 5Z-7-oxozeaenol markedly reduced expression of ß-catenin (ß-cat) and VE-cadherin at endothelial adherens junctions and augmented protease-activated receptor-1 (PAR-1)- or toll-like receptor-4 (TLR-4)-induced increases in lung vascular permeability. In inducible endothelial cell (EC)-restricted TAK1 knockout (TAK1i∆EC) mice, we observed that the lung endothelial barrier was compromised and in addition, TAK1i∆EC mice exhibited heightened sensitivity to septic shock. Consistent with these findings, we observed dramatically reduced ß-cat expression in lung ECs of TAK1i∆EC mice. Further, either inhibition or knockdown of TAK1 blocked PAR-1- or TLR-4-induced inactivation of glycogen synthase kinase 3ß (GSK3ß), which in turn increased phosphorylation, ubiquitylation, and degradation of ß-cat in ECs to destabilize the endothelial barrier. Importantly, we showed that TAK1 inactivates GSK3ß through AKT activation in ECs. Thus our findings in this study point to the potential of targeting the TAK1-AKT-GSK3ß axis as a therapeutic approach to treat uncontrolled lung vascular leak during sepsis.


Assuntos
Receptor 4 Toll-Like , Lesões do Sistema Vascular , Animais , Glicogênio Sintase Quinase 3 beta , Pulmão , MAP Quinase Quinase Quinases , Camundongos , Proteínas Proto-Oncogênicas c-akt
2.
Mol Biol Cell ; 31(11): 1167-1182, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32238105

RESUMO

Caveolae, the cave-like structures abundant in endothelial cells (ECs), are important for multiple signaling processes such as production of nitric oxide and caveolae-mediated intracellular trafficking. Using superresolution microscopy, fluorescence resonance energy transfer, and biochemical analysis, we observed that the EphB1 receptor tyrosine kinase constitutively interacts with caveolin-1 (Cav-1), the key structural protein of caveolae. Activation of EphB1 with its ligand Ephrin B1 induced EphB1 phosphorylation and the uncoupling EphB1 from Cav-1 and thereby promoted phosphorylation of Cav-1 by Src. Deletion of Cav-1 scaffold domain binding (CSD) motif in EphB1 prevented EphB1 binding to Cav-1 as well as Src-dependent Cav-1 phosphorylation, indicating the importance of CSD in the interaction. We also observed that Cav-1 protein expression and caveolae numbers were markedly reduced in ECs from EphB1-deficient (EphB1-/-) mice. The loss of EphB1 binding to Cav-1 promoted Cav-1 ubiquitination and degradation, and hence the loss of Cav-1 was responsible for reducing the caveolae numbers. These studies identify the crucial role of EphB1/Cav-1 interaction in the biogenesis of caveolae and in coordinating the signaling function of Cav-1 in ECs.


Assuntos
Cavéolas/metabolismo , Receptor EphB1/metabolismo , Animais , Cavéolas/fisiologia , Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Efrina-B1/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphB1/fisiologia , Transdução de Sinais/fisiologia
3.
Cell Death Discov ; 4: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796309

RESUMO

Vascular endothelial cadherin (VE-cad) expression at endothelial adherens junctions (AJs) regulates vascular homeostasis. Here we show that endothelial A20 is required for VE-cad expression at AJs to maintain and repair the injured endothelial barrier. In endothelial cell (EC)-restricted Tnfaip3 (A20) knockout (A20∆EC ) mice, LPS challenge caused uncontrolled lung vascular leak and persistent sequestration of polymorphonuclear neutrophil (PMNs). Importantly, A20∆EC mice exhibited drastically reduced VE-cad expression in lungs compared with wild-type counterparts. Endothelial expression of wild-type A20 but not the deubiquitinase-inactive A20 mutant (A20C103A) prevented VE-cad ubiquitination, restored VE-cad expression, and suppressed lung vascular leak in A20∆EC mice. Interestingly, IRAK-M-mediated nuclear factor-κB (NF-κB) signaling downstream of TLR4 was required for A20 expression in ECs. interleukin-1 receptor-associated kinase M (IRAK-M) knockdown suppressed basal and LPS-induced A20 expression in ECs. Further, in vivo silencing of IRAK-M in mouse lung vascular ECs through the CRISPR-Cas9 system prevented expression of A20 and VE-cad while augmenting lung vascular leak. These results suggest that targeting of endothelial A20 is a potential therapeutic strategy to restore endothelial barrier integrity in the setting of acute lung injury.

4.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L1003-L1017, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28385807

RESUMO

Vascular endothelial protein tyrosine phosphatase (VE-PTP) stabilizes endothelial adherens junctions (AJs) through constitutive dephosphorylation of VE-cadherin. Here we investigated the role of stromal interaction molecule 1 (STIM1) activation of store-operated Ca2+ entry (SOCE) in regulating AJ assembly. We observed that SOCE induced by STIM1 activated Pyk2 in human lung microvascular endothelial cells (ECs) and induced tyrosine phosphorylation of VE-PTP at Y1981. Pyk2-induced tyrosine phosphorylation of VE-PTP promoted Src binding to VE-PTP, Src activation, and subsequent VE-cadherin phosphorylation and thereby increased the endothelial permeability response. The increase in permeability was secondary to disassembly of AJs. Pyk2-mediated responses were blocked in EC-restricted Stim1 knockout mice, indicating the requirement for STIM1 in initiating the signaling cascade. A peptide derived from the Pyk2 phosphorylation site on VE-PTP abolished the STIM1/SOCE-activated permeability response. Thus Pyk2 activation secondary to STIM1-induced SOCE causes tyrosine phosphorylation of VE-PTP, and VE-PTP, in turn, binds to and activates Src, thereby phosphorylating VE-cadherin to increase endothelial permeability through disassembly of AJs. Our results thus identify a novel signaling mechanism by which STIM1-induced Ca2+ signaling activates Pyk2 to inhibit the interaction of VE-PTP and VE-cadherin and hence increase endothelial permeability. Therefore, targeting the Pyk2 activation pathway may be a potentially important anti-inflammatory strategy.


Assuntos
Junções Aderentes/metabolismo , Cálcio/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Permeabilidade da Membrana Celular , Células Endoteliais/metabolismo , Ativação Enzimática , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Camundongos Endogâmicos C57BL , Microvasos/citologia , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Peptídeos/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Receptor PAR-1/metabolismo , Quinases da Família src/metabolismo
5.
PLoS One ; 11(1): e0148133, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824764

RESUMO

5-Hydroxytryptamine (5-HT) induces proliferation of cancer cells and vascular cells. In addition to 5-HT production by several cancer cells including gastrointestinal and breast cancer, a significant level of 5-HT is released from activated platelets in the thrombotic environment of tumors, suggesting that inhibition of 5-HT signaling may constitute a new target for antiangiogenic anticancer drug discovery. In the current study we clearly demonstrate that 5-HT-induced angiogenesis was mediated through the 5-HT1 receptor-linked Gßγ/Src/PI3K pathway, but not through the MAPK/ERK/p38 pathway. In addition, 5-HT induced production of NADPH oxidase (NOX)-derived reactive oxygen species (ROS). In an effort to develop new molecularly targeted anticancer agents against 5-HT action in tumor growth, we demonstrate that BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, significantly inhibited 5-HT-induced angiogenesis. In addition, BJ-1108 induced a significant reduction in the size and weight of excised tumors in breast cancer cell-inoculated CAM assay, showing proportionate suppression of tumor growth along with inhibition of angiogenesis. In human umbilical vein endothelial cells (HUVECs), BJ-1108 significantly suppressed 5-HT-induced ROS generation and phosphorylation of PI3K/Akt but not of Src. Unlike NOX inhibitors, BJ-1108, which showed better antioxidant activity than vitamin C, barely suppressed superoxide anion induced by mevalonate or geranylgeranyl pyrophosphate which directly activates NOX without help from other signaling molecules in HUVECs, implying that the anti-angiogenic action of BJ-1108 was not mediated through direct action on NOX activation, or free radical scavenging activity. In conclusion, BJ-1108 inhibited 5-HT-induced angiogenesis through PI3K/NOX signaling but not through Src, ERK, or p38.


Assuntos
Aminopiridinas/farmacologia , Inibidores da Angiogênese/farmacologia , Compostos de Anilina/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , NADPH Oxidases/genética , Neovascularização Patológica/prevenção & controle , Fosfatidilinositol 3-Quinases/genética , Aminopiridinas/síntese química , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/síntese química , Compostos de Anilina/síntese química , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/patologia , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células MCF-7 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptores 5-HT1 de Serotonina/genética , Receptores 5-HT1 de Serotonina/metabolismo , Serotonina/farmacologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
6.
PLoS One ; 10(11): e0141753, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544726

RESUMO

Accumulated gene mutations in cancer suggest that multi-targeted suppression of affected signaling networks is a promising strategy for cancer treatment. In the present study, we report that 7-O-succinyl macrolactin A (SMA) suppresses tumor growth by stabilizing the ß-catenin destruction complex, which was achieved through inhibition of regulatory components associated with the complex. SMA significantly reduced the activities of PI3K/Akt, which corresponded with a decrease in GSK3ß phosphorylation, an increase in ß-catenin phosphorylation, and a reduction in nuclear ß-catenin content in HT29 human colon cancer cells. At the same time, the activity of tankyrase, which inhibits the ß-catenin destruction complex by destabilizing the axin level, was suppressed by SMA. Despite the low potency of SMA against tankyrase activity (IC50 of 50.1 µM and 15.5 µM for tankyrase 1 and 2, respectively) compared to XAV939 (IC50 of 11 nM for tankyrase 1), a selective and potent tankyrase inhibitor, SMA had strong inhibitory effects on ß-catenin-dependent TCF/LEF1 transcriptional activity (IC50 of 39.8 nM), which were similar to that of XAV939 (IC50 of 28.1 nM). In addition to suppressing the colony forming ability of colon cancer cells in vitro, SMA significantly inhibited tumor growth in CT26 syngenic and HT29 xenograft mouse tumor models. Furthermore, treating mice with SMA in combination with 5-FU in a colon cancer xenograft model or with cisplatin in an A549 lung cancer xenograft model resulted in greater anti-tumor activity than did treatment with the drugs alone. In the xenograft tumor tissues, SMA dose-dependently inhibited nuclear ß-catenin along with reductions in GSK3ß phosphorylation and increases in axin levels. These results suggest that SMA is a possible candidate as an effective anti-cancer agent alone or in combination with cytotoxic chemotherapeutic drugs, such as 5-FU and cisplatin, and that the mode of action for SMA involves stabilization of the ß-catenin destruction complex through inhibition of tankyrase and the PI3K/Akt signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Macrolídeos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Tanquirases/antagonistas & inibidores , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Proteína Axina/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer ; 14: 123, 2015 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-26116564

RESUMO

BACKGROUND: Although matrix metalloproteinase (MMP)-7 expression is correlated with increased metastatic potential in human colon cancer cells, the underlying molecular mechanism of invasive phenotype remains unknown. In the current study, we investigated the regulatory effects of membrane NADPH oxidase (NOX) and AMP activated protein kinase (AMPK) on MMP-7 expression and invasive phenotype change in colon cancer cells. METHODS: Production of superoxide anion was measured by lucigenin chemiluminescence assay using whole cells and protein extracts (NADPH oxidase activity), and intracellular reactive oxygen species (ROS) by fluorescence microscopy using 2',7'-dichlorofluorescein diacetate (DCF-DA). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to measure mRNA and protein levels, respectively. siRNA transfection was used to assess involvement of genes in cancer invasion, which were identified by Matrigel transwell invasion assay. Luciferase reporter assay was performed to identify transcription factors linked to gene expression. RESULTS: Under basal conditions, less invasive human colon cancer cells (HT29 and Caco-2) showed low MMP-7 expression but high NOX1 expression and AMPK phosphorylation. Treatment of HT29 and Caco-2 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced an invasive phenotype response along with corresponding increases in ROS production and NOX2 and MMP-7 expression as well as reduced AMPK phosphorylation, which resemble basal conditions of highly invasive human colon cancer cells (SW620 and HCT116). In addition, inverse regulation between AMPK phosphorylation and NOX2 and MMP-7 expression was observed in HT29 cells treated with different concentrations of exogenous hydrogen peroxide. TPA-induced invasive phenotype in HT29 cells was abolished by treatment with Vit. E, DPI, apocynin, and NOX2 siRNA but not NOX1 siRNA, indicating NOX2-derived ROS production induced an invasive phenotype. TPA-induced induction of MMP-7 expression was suppressed by AP-1, NF-κB, and MAPK (ERK, p38, and JNK) inhibitors, whereas TPA-induced expression of NOX2 and its regulators, p47phox and p67phox, was blocked by p38 and NF-κB inhibitors. CONCLUSIONS: Molecular switch from NOX1 to NOX2 in colon cancer cells induces ROS production and subsequently enhances MMP-7 expression by deactivating AMPK, which otherwise inhibits stimulus-induced autoregulation of ROS and NOX2 gene expression.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Expressão Gênica , Metaloproteinase 7 da Matriz/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Colo/patologia , Células HT29 , Humanos , Glicoproteínas de Membrana/genética , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidases/genética , Fenótipo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...