Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Anal Chem ; 95(44): 16115-16122, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37883730

RESUMO

Federal regulatory agencies require continuous verification of recombinant therapeutic monoclonal antibody (mAb) quality that is commonly achieved in a two-step process. First, the host-cell proteome and metabolome are removed from the production medium by protein A affinity chromatography. Second, following recovery from the affinity column with an acidic wash, mAb quality is assessed in multiple ways by liquid chromatography-mass spectrometry (LC-MS). However, lengthy sample preparation and the lack of higher-order structure analyses are limitations of this approach. To address these issues, this report presents an integrated approach for the analysis of two critical quality attributes of mAbs, namely titer and relative aggregate content. Integration of sample preparation and molecular-recognition-based analyses were achieved in a single step utilizing an isocratically eluted mobile affinity selection chromatography (MASC) column. MASC circumvents the protein A step, simplifying sample preparation. Within 10 min, (i) mAbs are fluorescently coded for specific detection, (ii) monomers and aggregates are resolved, (iii) the mAb titer is quantified, (iv) relative aggregate content is determined, (v) analytes are detected, and (vi) the column is ready for the next sample. It is suggested herein that this mode of rapid quality assessment will be of value at all stages of discovery (screening, clone selection, characterization), process R&D, and manufacturing. Rapid monitoring of variant formation is a critical element of quality evaluation.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteínas Recombinantes
2.
Anal Chem ; 90(3): 1668-1676, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29260867

RESUMO

The objective in routine analyses is generally to determine a small number of analytes. With samples containing ∼103 or more components there will be insufficient peak capacity to resolve analytes from nonanalytes. This issue was addressed herein through a new type of separation mechanism in which small groups of targeted analytes are bound with high affinity to a soluble analyte-sequestering transport phase (ASTP) composed of a ∼25 nm Stokes radius hydrophilic polymer core (HPC). When introduced into a 30 nm pore diameter size-exclusion chromatography (SEC) column, ASTP/analyte complexes elute within minutes, together, unretained, and relatively pure in the first chromatographic peak. Nonanalytes, in contrast, enter pore matrices of the packing material, are retarded in elution velocity, and are eluted later, separated from analytes. Fabrication of ASTPs was achieved by covalently coupling an antibody or some other affinity selector to a high molecular weight HPC. Beyond sequestering analytes, the function of ASTPs is to act as a molecular weight shifting agent, conveying an effective molecular weight to analytes that is much larger than that of nonanalytes and causing them to elute in the SEC void volume. This mode of separation is referred to as mobile affinity sorbent chromatography (MASC). Subsequent to their purification, ASTP/analyte complexes were detected by fluorescence spectrometry.


Assuntos
Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Imunoglobulina G/imunologia , Proteínas/isolamento & purificação , Animais , Cabras , Humanos , Camundongos , Peso Molecular , Polímeros/química , Porosidade , Proteínas/química , Proteínas/imunologia
4.
Mol Cell Proteomics ; 14(9): 2357-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25693799

RESUMO

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Assuntos
Proteínas de Neoplasias/sangue , Neoplasias/metabolismo , Peptídeos/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo , Espectrometria de Massas/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Neoplasias/sangue , Peptídeos/química , Reprodutibilidade dos Testes
5.
Bioanalysis ; 6(19): 2685-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25411709

RESUMO

Sample preparation has lagged far behind the evolution of instrumentation used in mass-linked protein analysis. Trypsin digestion, for example, still takes a day, as it did 50 years ago, while mass spectral analyses are achieved in seconds. Higher order structure of proteins is frequently modified by varying digestion conditions: shifting the initial points of trypsin cleavage, changing digestion pathways, accelerating peptide bond demasking and altering the distribution of miscleaved products at the completion of proteolysis. Reduction and alkylation are even circumvented in many cases. This review focuses on immobilized enzyme reactor technology as a means to achieve accelerated trypsin digestion by exploiting these phenomena.


Assuntos
Enzimas Imobilizadas/metabolismo , Proteínas/análise , Tripsina/metabolismo , Humanos
6.
Anal Chem ; 85(23): 11501-8, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24156552

RESUMO

A rapid plasma extraction technology that collects a 2.5 µL aliquot of plasma within three minutes from a finger-stick derived drop of blood was evaluated. The utility of the plasma extraction cards used was that a paper collection disc bearing plasma was produced that could be air-dried in fifteen minutes and placed in a mailing envelop for transport to an analytical laboratory. This circumvents the need for venipuncture and blood collection in specialized vials by a phlebotomist along with centrifugation and refrigerated storage. Plasma extraction was achieved by applying a blood drop to a membrane stack through which plasma was drawn by capillary action. During the course of plasma migration to a collection disc at the bottom of the membrane stack blood cells were removed by a combination of adsorption and filtration. After the collection disc filled with an aliquot of plasma the upper membranes were stripped from the collection card and the collection disc was air-dried. Intercard differences in the volume of plasma collected varied approximately 1% while volume variations of less than 2% were seen with hematocrit levels ranging from 20% to 71%. Dried samples bearing metabolites and proteins were then extracted from the disc and analyzed. 25-Hydroxy vitamin D was quantified by LC-MS/MS analysis following derivatization with a secosteroid signal enhancing tag that imparted a permanent positive charge to the vitamin and reduced the limit of quantification (LOQ) to 1 pg of collected vitamin on the disc; comparable to values observed with liquid-liquid extraction (LLE) of a venipuncture sample. A similar study using conventional proteomics methods and spectral counting for quantification was conducted with yeast enolase added to serum as an internal standard. The LOQ with extracted serum samples for enolase was 1 µM, linear from 1 to 40 µM, the highest concentration examined. In all respects protein quantification with extracted serum samples was comparable to that observed with serum samples obtained by venipuncture.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Miniaturização/métodos , Plasma/química , Coleta de Amostras Sanguíneas/normas , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Humanos , Masculino , Miniaturização/normas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas
7.
J Sep Sci ; 36(3): 454-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23281316

RESUMO

Trypsin digestion is a major component of preparing proteins for peptide based identification and quantification by mass spectral (MS) analysis. Surprisingly proteolysis is the slowest part of the proteomics process by an order of magnitude. Numerous recent efforts to reduce protein digestion to a few minutes have centered on the use of an immobilized enzyme reactor (IMER) to minimize both trypsin autolysis and vastly increase the trypsin to protein ratio. A central question in this approach is whether proteolysis with an IMER produces the same peptide cleavage products as derived from solution based digestion. The studies reported here examined this question with transferrin; a model protein of known resistance to trypsin digestion. Results from these studies confirmed that a trypsin-IMER can in fact digest transferrin in a few minutes; providing tryptic peptides that subsequent to MS analysis allow sequence identification equivalent to solution digestion. Although many of the peptides obtained from these two trypsin digestion systems were identical, many were not. The greatest difference was that the trypsin- IMER produces (i) numerous peptides bearing multiple lysine and/or arginine residues and (ii) identical portions of the protein sequence were found in multiple peptides. Most of these peptides were derived from five regions in transferrin. These results were interpreted to mean that proteolysis in the case of transferrin occurred faster than the rate at which buried lysine and arginine residues were unmasked in the five regions providing peptides that were only partially digested.


Assuntos
Transferrina/química , Tripsina/química , Sequência de Aminoácidos , Biocatálise , Digestão , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Humanos , Dados de Sequência Molecular , Proteólise , Transferrina/genética , Tripsina/genética
9.
Anal Chem ; 84(16): 7021-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22845770

RESUMO

Trypsin concentration and the unmasking of cleavage sites in proteins play important roles in the stoichiometry of peptide production and the number of limit peptides generated during proteolysis. The hypothesis explored in this work was that native proteins could be digested and identified without disulfide reduction by (i) enhancing the unmasking of cleavage sites through elevated reaction temperatures and (ii) increasing trypsin concentration by use of an immobilized enzyme reactor (IMER). Transferrin was chosen as a model protein for these studies on the basis of its resistance to trypsin digestion. Results from this study showed greater than 70% sequence coverage in the peptides identified when nonreduced transferrin was digested at 60 °C. Large numbers of missed cleavages were observed from specific regions in proteins. Proteolysis appeared to start at a small number of high frequency cleavage sites in the cases of both reduced and nonreduced transferrin. Although approximately the same number of peptides were obtained from both structural forms of transferrin, the location of high frequency cleavage sites and the peptides produced were very different. Results from this study suggest that the location of initial cleavage sites along with the path of subsequent digestion depends strongly on the type of treatment used to open protein structures up for proteolysis.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteólise , Temperatura , Tripsina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dissulfetos/química , Enzimas Imobilizadas/química , Glicosilação , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Proteômica , Tripsina/química
10.
Mol Cell Proteomics ; 11(2): M111.010892, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22104028

RESUMO

Mutations in the gene encoding DJ-1 have been identified in patients with familial Parkinson's disease (PD) and are thought to inactivate a neuroprotective function. Oxidation of the sulfhydryl group to a sulfinic acid on cysteine residue C106 of DJ-1 yields the "2O " form, a variant of the protein with enhanced neuroprotective function. We hypothesized that some familial mutations disrupt DJ-1 activity by interfering with conversion of the protein to the 2O form. To address this hypothesis, we developed a novel quantitative mass spectrometry approach to measure relative changes in oxidation at specific sites in mutant DJ-1 as compared with the wild-type protein. Treatment of recombinant wild-type DJ-1 with a 10-fold molar excess of H(2)O(2) resulted in a robust oxidation of C106 to the sulfinic acid, whereas this modification was not detected in a sample of the familial PD mutant M26I exposed to identical conditions. Methionine oxidized isoforms of wild-type DJ-1 were depleted, presumably as a result of misfolding and aggregation, under conditions that normally promote conversion of the protein to the 2O form. These data suggest that the M26I familial substitution and methionine oxidation characteristic of sporadic PD may disrupt DJ-1 function by disfavoring a site-specific modification required for optimal neuroprotective activity. Our findings indicate that a single amino acid substitution can markedly alter a protein's ability to undergo oxidative modification, and they imply that stimulating the conversion of DJ-1 to the 2O form may be therapeutically beneficial in familial or sporadic PD.


Assuntos
Cisteína/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Ácidos Sulfínicos/metabolismo , Substituição de Aminoácidos , Cisteína/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metionina/química , Metionina/metabolismo , Proteínas Oncogênicas/genética , Oxidantes/farmacologia , Oxirredução , Fragmentos de Peptídeos/metabolismo , Proteína Desglicase DJ-1 , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Anal Chem ; 83(24): 9328-36, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21939227

RESUMO

There is potential that the pathological effects of oxidative stress (OS) associated diseases such as diabetes could be ameliorated with antioxidants, but this will require a clearer understanding of the pathway(s) by which proteins are damaged by OS. This study reports the development and use of methods that assess the efficacy of dietary antioxidant supplementation at a mechanistic level. Data reported here evaluate the impact of green tea supplementation on oxidative stress induced post-translational modifications (OSi-PTMs) in plasma proteins of Zucker diabetic fatty (ZDF) rats. The mechanism of antioxidant protection was examined through both the type and amount of OSi-PTMs using mass spectrometry based identification and quantification. Carbonylated proteins in freshly drawn blood samples were derivatized with biotin hydrazide. Proteins thus biotinylated were selected from plasma samples of green tea fed diabetic rats and control animals by avidin affinity chromatography, further fractionated by reversed phase chromatography (RPC); fractions from the RPC column were tryptic digested, and the tryptic digest was fractionated by RPC before being identified by tandem mass spectrometry (MS/MS). Relative quantification of peptides bearing carbonylation sites was achieved for the first time by RPC-MS/MS using selective reaction monitoring (SRM). Seventeen carbonylated peptides were detected and quantified in both control and treated plasma. The relative concentration of eight was dramatically different between control and green tea treated animals. Seven of the OSi-PTM bearing peptides had dropped dramatically in concentration with treatment while one increased, indicating differential regulation of carbonylation by antioxidants. Green tea antioxidants were found to reduce carbonylation of proteins by lipid peroxidation end products most, followed by advanced glycation end products to a slightly lower extent. Direct oxidation of proteins by reactive oxygen species (ROS) was protected the least by green tea.


Assuntos
Antioxidantes/farmacologia , Hemoglobinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica , Espectrometria de Massas em Tandem , Animais , Antioxidantes/química , Biotina/análogos & derivados , Biotina/química , Peptídeos/análise , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Chá/química , Tripsina/metabolismo
12.
J Proteome Res ; 10(9): 3959-72, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21800835

RESUMO

This study reports for the first time qualitative and quantitative differences in carbonylated proteins shed into blood as a function of increasing levels of OS. Carbonylated proteins in freshly drawn blood from pairs of diabetic and lean rats were derivatized with biotin hydrazide, dialyzed, and enriched with avidin affinity chromatography. Proteins thus selected were used in several ways. Differences between control and diabetic subjects in relative concentration of proteins was achieved by differential labeling of tryptic digests with iTRAQ reagents followed by reversed phase chromatography (RPC) and tandem mass spectrometry (MS/MS). Identification and characterization of OS induced post-translational modification sites in contrast was achieved by fractionation of affinity selected proteins before proteolysis and RPC-MS/MS. Relative quantification of peptides bearing oxidative modifications was achieved for the first time by selective reaction monitoring (SRM). Approximately 1.7% of the proteins in Zucker diabetic rat plasma were selected by the avidin affinity column as compared to 0.98% in lean animal plasma. Among the 35 proteins identified and quantified, Apo AII, clusterin, hemopexin precursor, and potassium voltage-gated channel subfamily H member 7 showed the most dramatic changes in concentration. Seventeen carbonylation sites were identified and quantified, 11 of which changed more than 2-fold in oxidation state. Three types of carbonylation were identified at these sites: direct oxidative cleavage from reactive oxygen species, glycation and addition of advanced glycation end products, and addition of lipid peroxidation products. Direct oxidation was the dominant form of carbonylation observed while hemoglobin and murinoglobulin 1 homologue were the most heavily oxidized proteins.


Assuntos
Estresse Oxidativo/fisiologia , Animais , Biotina/análogos & derivados , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/química , Cromatografia de Fase Reversa , Bases de Dados de Proteínas , Diabetes Mellitus Experimental , Isoprostanos/urina , Oxirredução , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Carbonilação Proteica , Proteômica/métodos , Ratos , Ratos Zucker , Espectrometria de Massas em Tandem
13.
J Proteomics ; 74(11): 2395-416, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21856457

RESUMO

The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding.


Assuntos
Proteínas Sanguíneas/metabolismo , Estresse Oxidativo/fisiologia , Carbonilação Proteica , Adulto , Proteínas Sanguíneas/efeitos dos fármacos , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma/sangue , Carcinoma/metabolismo , Carcinoma/patologia , Estudos de Casos e Controles , Feminino , Humanos , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Fumar/metabolismo , Fumar/patologia
14.
J Transl Med ; 9: 80, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21619653

RESUMO

BACKGROUND: Variability of plasma sample collection and of proteomics technology platforms has been detrimental to generation of large proteomic profile datasets from human biospecimens. METHODS: We carried out a clinical trial-like protocol to standardize collection of plasma from 204 healthy and 216 breast cancer patient volunteers. The breast cancer patients provided follow up samples at 3 month intervals. We generated proteomics profiles from these samples with a stable and reproducible platform for differential proteomics that employs a highly consistent nanofabricated ChipCube™ chromatography system for peptide detection and quantification with fast, single dimension mass spectrometry (LC-MS). Protein identification is achieved with subsequent LC-MS/MS analysis employing the same ChipCube™ chromatography system. RESULTS: With this consistent platform, over 800 LC-MS plasma proteomic profiles from prospectively collected samples of 420 individuals were obtained. Using a web-based data analysis pipeline for LC-MS profiling data, analyses of all peptide peaks from these plasma LC-MS profiles reveals an average coefficient of variability of less than 15%. Protein identification of peptide peaks of interest has been achieved with subsequent LC-MS/MS analyses and by referring to a spectral library created from about 150 discrete LC-MS/MS runs. Verification of peptide quantity and identity is demonstrated with several Multiple Reaction Monitoring analyses. These plasma proteomic profiles are publicly available through ProteomeCommons. CONCLUSION: From a large prospective cohort of healthy and breast cancer patient volunteers and using a nano-fabricated chromatography system, a consistent LC-MS proteomics dataset has been generated that includes more than 800 discrete human plasma profiles. This large proteomics dataset provides an important resource in support of breast cancer biomarker discovery and validation efforts.


Assuntos
Neoplasias da Mama/sangue , Bases de Dados de Proteínas , Saúde , Proteínas de Neoplasias/sangue , Proteômica , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Espectrometria de Massas , Proteínas de Neoplasias/química , Peptídeos/sangue , Peptídeos/química , Estudos Prospectivos
15.
Anal Biochem ; 408(1): 71-85, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20705048

RESUMO

Glycans are cell-type-specific, posttranslational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high-mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low nanogram per milliliter levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines.


Assuntos
Biomarcadores Tumorais/química , Cromatografia Líquida de Alta Pressão/métodos , Glicoproteínas/química , Lectinas/química , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores Tumorais/sangue , Cromatografia de Afinidade/métodos , Bases de Dados Factuais , Feminino , Glicopeptídeos/química , Glicoproteínas/sangue , Glicoproteínas/metabolismo , Humanos , Masculino , Neoplasias/diagnóstico , Polissacarídeos/isolamento & purificação , Ligação Proteica , Tripsina/metabolismo
16.
J Chromatogr A ; 1217(49): 7661-8, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21036361

RESUMO

Proteolysis is a central component of most proteomics methods. Unfortunately much of the information relating to the structural diversity of proteins is lost during digestion. This paper describes a method in which the native proteome of yeast was subjected to preliminary fractionation by size exclusion chromatography (SEC) prior to trypsin digestion of SEC fractions and reversed phase chromatography-mass spectral analysis to identify tryptic peptides thus generated. Through this approach proteins associated with other proteins in high molecular mass complexes were recognized and identified. A focus of this work was on the identification of Hub proteins that associate with multiple interaction partners. A critical component of this strategy is to choose methods and conditions that maximize retention of native structure during the various stages of analysis prior to proteolysis, especially during cell lysis. Maximum survival of protein complexes during lysis was obtained with the French press and bead-beater methods of cell disruption at approximately pH 8 with 200 mM NaCl in the lysis buffer. Structure retention was favored by higher ionic strength, suggesting that hydrophobic effects are important in maintaining the structure of protein complexes. Recovery of protein complexes declined substantially with storage at any temperature, but storage at -20°C was best when low temperature storage was necessary. Slightly lower recovery was obtained with storage at -80°C while lowest recovery was achieved at 4°C. It was concluded that initial fractionation of native proteins in cell lysates by SEC prior to RPC-MS/MS of tryptic digests can be used to recognize and identify proteins in complexes along with their interaction partners in known protein complexes.


Assuntos
Cromatografia em Gel/métodos , Peptídeos/química , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/química , Álcool Desidrogenase , Fracionamento Celular , Concentração de Íons de Hidrogênio , Concentração Osmolar , Peptídeos/metabolismo , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/química , Temperatura , Tripsina/metabolismo
17.
OMICS ; 14(6): 689-99, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20958246

RESUMO

Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC fractionation of intact proteins. This simple LC-based workflow is an effective technique to reduce sample complexity, minimize technical variation, and enable simultaneous quantification of four samples. This method was used to determine protein oxidation in an iron accumulating mutant of Saccharomyces cerevisiae exposed to oxidative stress. Overall, 31 proteins were identified with 99% peptide confidence, and of those, 27 proteins were quantified. Most of the identified proteins were associated with energy metabolism (32.3%), and cellular defense, transport, and folding (38.7%), suggesting a drop in energy production and reducing power of the cells due to the damage of glycolytic enzymes and decrease in activity of enzymes involved in protein protection and regeneration. In addition, the oxidation sites of seven proteins were identified and their estimated position also indicated a potential impact on the enzymatic activities. Predicted 3D structures of peroxiredoxin (TSA1) and thioredoxin II (TRX2) revealed close proximity of all oxidized amino acid residues to the protein active sites.


Assuntos
Proteínas de Ligação ao Ferro/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Peroxidases/química , Peroxidases/genética , Peroxidases/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/genética , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Frataxina
18.
J Proteome Res ; 9(11): 5960-8, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20858014

RESUMO

Recent studies have shown that antibodies targeting Lewis x (Le(x)) antigen are a valuable tool in the isolation and identification of glycoproteins in plasma. A focus of this study was to determine whether sialylated Lewis x (sLe(x)) antigen carrying glycoproteins occur in human plasma and whether an antibody targeting this antigen could be used to isolate and identify glycoproteins bearing this antigen. An additional objective was to determine the degree to which proteins conjugated to Le(x) and sLe(x) antigens are similar in structure. A specific anti-sLe(x) antibody (anti-sLe(x)Ab), CHO-131, immobilized in an immunoaffinity column was used to select a set of specific sLe(x) bearing proteins from human plasma, after which they were identified by either of two analytical strategies. One approach was to further resolve the affinity selected proteins by reversed phase chromatography (RPC), tryptic digest the RPC fractions, and identify peptide fragments by MALDI-MS/MS. The second was to tryptic digest the affinity selected protein fraction, further resolve the tryptic fragments by RPC, and identify peptides from RPC fractions by MALDI-MS/MS. Histidine-rich glycoprotein, plasminogen, apolipoprotein A-I, vitronectin, proteoglycan-4, clusterin, Ig gamma-2 chain C region, Ig mu chain C region, and interalpha-trypsin inhibitor heavy chain H4 were found to change three folds or more in association with breast cancer. Fifty percent of the glycoproteins carrying either sLe(x) antigen from CHO-131 selection, Le(x) antigen from selection with TG-1 antibody, or both were found to be changed three folds or more in concentration in breast cancer plasma relative to controls.


Assuntos
Glicoproteínas/imunologia , Antígenos CD15/sangue , Anticorpos Monoclonais , Neoplasias da Mama/química , Feminino , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Humanos , Antígenos CD15/imunologia , Proteínas de Neoplasias/sangue , Conformação Proteica
19.
J Proteome Res ; 9(8): 3766-80, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20521848

RESUMO

Excessive oxidative stress leaves a protein carbonylation fingerprint in biological systems. Carbonylation is an irreversible post-translational modification (PTM) that often leads to the loss of protein function and can be a component of multiple diseases. Protein carbonyl groups can be generated directly (by amino acids oxidation and the alpha-amidation pathway) or indirectly by forming adducts with lipid peroxidation products or glycation and advanced glycation end-products. Studies of oxidative stress are complicated by the low concentration of oxidation products and a wide array of routes by which proteins are carbonylated. The development of new selection and enrichment techniques coupled with advances in mass spectrometry are allowing the identification of hundreds of new carbonylated protein products from a broad range of proteins located at many sites in biological systems. The focus of this review is on the use of proteomics tools and methods to identify oxidized proteins along with specific sites of oxidative damage and the consequences of protein oxidation.


Assuntos
Modelos Moleculares , Estresse Oxidativo/fisiologia , Carbonilação Proteica/fisiologia , Proteínas/isolamento & purificação , Proteômica/métodos , Biotina/análogos & derivados , Eletroforese em Gel Bidimensional , Hidrazinas , Estrutura Molecular , Oxirredução , Carbonilação Proteica/genética , Proteínas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
20.
J Sep Sci ; 33(10): 1438-47, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20405482

RESUMO

Selectivity of both peptide- and glycan-targeting antibodies was examined by 2-D LC-MS/MS. Proteins selected from biological extracts immunospecifically in a first chromatography dimension using antibodies immobilized by either covalent coupling or adsorption to protein G were desorbed with a denaturing mobile phase and transferred to a 1.5 microm nonporous particle RP chromatography (NP-RPC) column in a second dimension. Protein peak capacity of the NP-RPC column was approximately 50. Peaks collected from the RPC column were tryptic digested and the peptide fragments were identified by MALDI-MS/MS. The objective of this analytical strategy was to discriminate between protein antigens and nonantigens through identification of their peptides, leading to an evaluation of the selectivity of antibodies and immunosorbents. Quantification of the relative amount of antigen and nonantigen species captured by immunosorbents was achieved by absorbance, along with the likely capture mechanism. A limitation of the approach was in discriminating between isoforms of an antigen in which neither the antibody nor the LC-MS system targeted the differentiating feature in the isoforms.


Assuntos
Anticorpos/análise , Anticorpos/imunologia , Cromatografia Líquida/métodos , Imunoadsorventes/análise , Imunoadsorventes/imunologia , Espectrometria de Massas em Tandem/métodos , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...