Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(28): 11516-11520, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277582

RESUMO

Oxyallyl derivatives are typically elusive compounds. Even recently reported "stabilized" 1,3-diaminooxyallyl species are still highly reactive and have short lifetimes at room temperature. Herein, we report the synthesis and preliminary study of mesoionic pyrimidine derivatives that feature 1,3-bis(dimethylamino)oxyallyl patterns with an unprecedented level of stabilization. The latter are not only insensitive towards air and moisture, but they are also compatible with the formation of an ancillary stable N-heterocyclic carbene moiety. As the oxyallyl pattern is proton-responsive, it allows the reversible switching of the electronic properties of the carbene, as a ligand.

2.
J Am Chem Soc ; 141(2): 1109-1117, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30561990

RESUMO

The oxidation of the Breslow intermediate resulting from the addition of an N-heterocyclic carbene (NHC) to benzaldehyde triggers a fast deprotonation, followed by a second electron transfer, directly affording the corresponding acylium at E > -0.8 V (versus Fc/Fc+). Similarly, the oxidation of the cinnamaldehyde analogue occurs at an even higher potential and is not a reversible electrochemical process. As a whole, and contrary to previous beliefs, it is demonstrated that Breslow intermediates, which are the key intermediates in NHC-catalyzed transformations of aldehydes, cannot undergo a single electron transfer (SET) with mild oxidants ( E < -1.0 V). Moreover, the corresponding enol radical cations are ruled out as relevant intermediates. It is proposed that oxidative NHC-catalyzed radical transformations of enals proceed either through SET from the corresponding electron-rich enolate or through coupled electron-proton transfer from the enol, in any case generating neutral capto-dative radicals. Relevant electrochemical surrogates of these paramagnetic species have been isolated.

3.
RSC Adv ; 8(67): 38346-38350, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-35559111

RESUMO

Oxidation of vinamidinium salts with meta-chloroperbenzoic acid is the key synthetic step towards new persistent 1,3-di(amino)oxyallyl radical cations. When applied to parent vinamidines, this protocol allows for a simple straightforward synthesis of α-keto-ß-diimine ligands, for which no convenient synthesis was previously available.

4.
Angew Chem Int Ed Engl ; 56(4): 1031-1035, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27995763

RESUMO

Complexes of the ubiquitous ß-diketiminates (NacNac) ligands have been reported with most elements of the periodic table, including Group 14 Si, Ge, Sn, and Pb. The striking absence of carbon representatives has been attributed to the extreme electrophilicity of the putative C-NacNac adducts. An electron enriched 2,4-(dimethylamino)diketiminato backbone is described, which allowed for the synthesis and isolation of such stable pyrimidin-1,3-diium and pyrimidinium-2-ylidene salts. Structural and preliminary reactivity studies are reported, including an air-stable gold complex. An unforeseen original class of stable N-heterocyclic carbenes and, more generally, the potential of electron-rich NacNac patterns for taming highly electrophilic centers are showcased.

5.
Chem Commun (Camb) ; 52(76): 11422-11425, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27722255

RESUMO

We report an experimental and theoretical study of the 1,1,3,3-tetrakis-di(methylamino)oxyallyl radical cation. Despite simple substituents with minimal steric hindrance, this radical was found to be stable under an inert atmosphere and persistent for several hours in well-aerated solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA