Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Redox Biol ; 40: 101839, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33486153

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction for which there is an unmet need for better treatment options. Although oxidative stress is a common feature of neurodegenerative diseases, notably PD, there is currently no efficient therapeutic strategy able to tackle this multi-target pathophysiological process. Based on our previous observations of the potent antioxidant and neuroprotective activity of SELENOT, a vital thioredoxin-like selenoprotein, we designed the small peptide PSELT from its redox active site to evaluate its antioxidant properties in vivo, and its potential polyfunctional activity in PD models. PSELT protects neurotoxin-treated dopaminergic neurons against oxidative stress and cell death, and their fibers against neurotoxic degeneration. PSELT is cell-permeable and acts in multiple subcellular compartments of dopaminergic neurons that are vulnerable to oxidative stress. In rodent models of PD, this protective activity prevented neurodegeneration, restored phosphorylated tyrosine hydroxylase levels, and led to improved motor skills. Transcriptomic analysis revealed that gene regulation by PSELT after MPP+ treatment negatively correlates with that occurring in PD, and positively correlates with that occurring after resveratrol treatment. Mechanistically, a major impact of PSELT is via nuclear stimulation of the transcription factor EZH2, leading to neuroprotection. Overall, these findings demonstrate the potential of PSELT as a therapeutic candidate for treatment of PD, targeting oxidative stress at multiple intracellular levels.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico
2.
Sci Rep ; 6: 35813, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779218

RESUMO

Anorexia nervosa (AN) is associated with low-grade systemic inflammation and altered gut microbiota. However, the molecular origin of the inflammation remains unknown. Toll-like receptors are key regulators of innate immune response and their activation seems also to be involved in the control of food intake. We used activity-based anorexia (ABA) model to investigate the role of TLR4 and its contribution in anorexia-associated low-grade inflammation. Here, we found that ABA affected early the intestinal inflammatory status and the hypothalamic response. Indeed, TLR4 was upregulated both on colonic epithelial cells and intestinal macrophages, leading to elevated downstream mucosal cytokine production. These mucosal changes occurred earlier than hypothalamic changes driving to increased levels of IL-1ß and IL-1R1 as well as increased levels of plasma corticosterone. Paradoxically, TLR4-deficient mice exhibited greater vulnerability to ABA with increased mortality rate, suggesting a major contribution of TLR4-mediated responses during ABA-induced weight loss.


Assuntos
Anorexia/fisiopatologia , Gastroenterite/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Anorexia/metabolismo , Colo/metabolismo , Colo/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gastroenterite/imunologia , Hipotálamo/imunologia , Hipotálamo/fisiopatologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condicionamento Físico Animal , Transdução de Sinais , Receptor 4 Toll-Like/genética , Redução de Peso/genética
3.
Sci Rep ; 6: 21887, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26906060

RESUMO

A role of gut-brain axis emerges in the pathophysiology of anorexia nervosa and maintaining adapted physical activity during refeeding remains discussed. We aimed to assess gastrointestinal protein metabolism and investigate the contribution of physical activity during refeeding in C57BL/6 mice with activity-based anorexia (ABA). ABA mice exhibited lower body weight and food intake with increase of lean mass/fat mass ratio and fat oxidation. Colonic permeability was increased in ABA. Ad libitum food access was then restored and ABA group was divided into two subgroups, with access to running wheel (ABA-PA) or not (ABA-NPA). After refeeding, fat free mass was completely restored only in ABA-PA. Colonic permeability was enhanced in ABA-NPA. Finally, muscle kynurenine conversion into kynurenic acid was lower in ABA-NPA who also exhibited altered behavior. Maintaining physical activity during refeeding may thus limit colonic hyperpermeability and improve behavior in anorectic mice.


Assuntos
Anorexia Nervosa/fisiopatologia , Comportamento Animal/fisiologia , Colo/metabolismo , Ingestão de Alimentos , Animais , Western Blotting , Composição Corporal , Peso Corporal , Modelos Animais de Doenças , Metabolismo Energético , Cinurenina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Permeabilidade , Condicionamento Físico Animal , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Junções Íntimas/metabolismo , Transaminases/genética , Transaminases/metabolismo
4.
Rev. bras. farmacogn ; 25(4): 387-394, July-Aug. 2015. graf
Artigo em Inglês | LILACS | ID: lil-763204

RESUMO

AbstractPrevious studies by us demonstrated the antidepressant-like and antinociceptive effects of lipophilic extracts and dimeric acyl-phloroglucinols from species of the genus Hypericum native to Southern Brazil. Uliginosin B and HC1 (an enriched phloroglucinol fraction from Hypericum caprifoliatum) are able to inhibit monoamine synaptosomal uptake without binding to the monoaminergic sites on neuronal transporters, unlike classical antidepressants. The current study aimed at investigating the action of H. caprifoliatum Cham. & Schltdl. and Hypericum polyanthemum Klotzsch ex Reichardt, Hypericaceae, cyclohexane extracts and their main component, HC1 and uliginosin B, on G protein coupled receptors by using the [35S]-guanosine-5′-O-(3-thio)triphosphate ([35S]-GTPγS) binding assay, which reveals the G protein activity. The antidepressant-like effect of acute (one or three treatments within 24 h) and repeated (five days with and without a three day wash-out) treatments with the cyclohexane extracts was evaluated using the rat forced swimming test. The [35S]-GTPγS binding to monoamines and opioid receptors stimulated by agonists was performed ex vivo in brain membranes of rats acutely or repeatedly treated with the cyclohexane extracts. The effect of HC1 and Uliginosin B on [35S]-GTPγS binding assay was performed by direct incubation with brain membranes in the absence of agonists. Their antidepressant-like effect was evaluated through the mice forced swimming test. The extracts, HC1 and Uliginosin B showed antidepressant-like effect in the forced swimming test. The acute treatments with extracts increased the [35S]-GTPγS binding stimulated by the monoamines, while after five days of treatment the [35S]-GTPγS binding was reduced even after three day wash-out. These effects are not due to HC1 or Uliginosin B interaction with the receptors, since direct incubation with these phloroglucinols did not affect [35S]-GTPγS binding to membranes. Our findings indicate that H. caprifoliatum and H. polyanthemumextracts bring about adaptive changes in monoamine receptors, which reinforces their antidepressant-like profile.

5.
Peptides ; 31(5): 962-72, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20138196

RESUMO

Peptide E (a 25-amino acid peptide derived from proenkephalin A) and beta-endorphin (a 31-amino acid peptide derived from proopiomelanocortin) bind with high affinity to opioid receptors and share structural similarities but induce analgesic effects of very different intensity. Indeed, whereas they possess the same N-terminus Met-enkephalin message sequence linked to a helix by a flexible spacer and a C-terminal part in random coil conformation, in contrast with peptide E, beta-endorphin produces a profound analgesia. To determine the key structural elements explaining this very divergent opioid activity, we have compared the structural and pharmacological characteristics of several chimeric peptides derived from peptide E and beta-endorphin. Structures were obtained under the same experimental conditions using circular dichroism, computational estimation of helical content and/or nuclear magnetic resonance spectroscopy (NMR) and NMR-restrained molecular modeling. The hot-plate and writhing tests were used in mice to evaluate the antinociceptive effects of the peptides. Our results indicate that neither the length nor the physicochemical profile of the spacer plays a fundamental role in analgesia. On the other hand, while the functional importance of the helix cannot be excluded, the last 5 residues in the C-terminal part seem to be crucial for the expression or absence of the analgesic activity of these peptides. These data raise the question of the true function of peptides E in opioidergic systems.


Assuntos
Analgésicos/química , Analgésicos/uso terapêutico , Encefalinas/química , Peptídeos/química , Peptídeos/uso terapêutico , beta-Endorfina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Analgésicos/síntese química , Animais , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Dados de Sequência Molecular , Dor/tratamento farmacológico , Peptídeos/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...