Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1281, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599503

RESUMO

Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.


Assuntos
Histona Desacetilase 2/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Miocárdio/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miocárdio/metabolismo
2.
Stem Cells ; 34(3): 699-710, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26731607

RESUMO

Hematopoietic stem cells (HSCs) maintain blood cell production life-long by their unique abilities of self-renewal and differentiation into all blood cell lineages. Growth arrest and DNA-damage-inducible 45 alpha (GADD45A) is induced by genotoxic stress in HSCs. GADD45A has been implicated in cell cycle control, cell death and senescence, as well as in DNA-damage repair. In general, GADD45A provides cellular stability by either arresting the cell cycle progression until DNA damage is repaired or, in cases of fatal damage, by inducing apoptosis. However, the function of GADD45A in hematopoiesis remains controversial. We revealed the changes in murine HSC fate control orchestrated by the expression of GADD45A at single cell resolution. In contrast to other cellular systems, GADD45A expression did not cause a cell cycle arrest or an alteration in the decision between cell survival and apoptosis in HSCs. Strikingly, GADD45A strongly induced and accelerated the differentiation program in HSCs. Continuous tracking of individual HSCs and their progeny via time-lapse microscopy elucidated that once GADD45A was expressed, HSCs differentiate into committed progenitors within 29 hours. GADD45A-expressing HSCs failed to long-term reconstitute the blood of recipients by inducing multilineage differentiation in vivo. Importantly, γ-irradiation of HSCs induced their differentiation by upregulating endogenous GADD45A. The differentiation induction by GADD45A was transmitted by activating p38 Mitogen-activated protein kinase (MAPK) signaling and allowed the generation of megakaryocytic-erythroid, myeloid, and lymphoid lineages. These data indicate that genotoxic stress-induced GADD45A expression in HSCs prevents their fatal transformation by directing them into differentiation and thereby clearing them from the system.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas , Proteínas Nucleares/genética , Animais , Apoptose/genética , Proteínas de Ciclo Celular/biossíntese , Proliferação de Células/genética , Sobrevivência Celular/genética , Dano ao DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Humanos , Camundongos , Proteínas Nucleares/biossíntese , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Nat Commun ; 6: 8928, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603207

RESUMO

Haematopoietic stem cells (HSCs) require the right composition of microRNAs (miR) for proper life-long balanced blood regeneration. Here we show a regulatory circuit that prevents excessive HSC self-renewal by upregulation of miR-193b upon self-renewal promoting thrombopoietin (TPO)-MPL-STAT5 signalling. In turn, miR-193b restricts cytokine signalling, by targeting the receptor tyrosine kinase c-KIT. We generated a miR-193b knockout mouse model to unravel the physiological function of miR-193b in haematopoiesis. MiR-193b(-/-) mice show a selective gradual enrichment of functional HSCs, which are fully competent in multilineage blood reconstitution upon transplantation. The absence of miR-193b causes an accelerated expansion of HSCs, without altering cell cycle or survival, but by decelerating differentiation. Conversely, ectopic miR-193b expression restricts long-term repopulating HSC expansion and blood reconstitution. MiR-193b-deficient haematopoietic stem and progenitor cells exhibit increased basal and cytokine-induced STAT5 and AKT signalling. This STAT5-induced microRNA provides a negative feedback for excessive signalling to restrict uncontrolled HSC expansion.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Trombopoetina/metabolismo , Fator de Transcrição STAT5/metabolismo , Trombopoetina/metabolismo , Animais , Proliferação de Células/genética , Citometria de Fluxo , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Receptores de Citocinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Imagem com Lapso de Tempo
4.
Stem Cell Reports ; 3(1): 34-43, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25068120

RESUMO

The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC) must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.


Assuntos
Citocinas/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Diferenciação Celular/fisiologia , Citometria de Fluxo , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Vídeo , Proteínas GADD45
5.
Blood ; 105(5): 2107-14, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15536149

RESUMO

Activating fetal liver tyrosine kinase 3 (Flt3) mutations represent the most common genetic aberrations in acute myeloid leukemia (AML). Most commonly, they occur as internal tandem duplications in the juxtamembrane domain (Flt3-ITD) that transform myeloid cells in vitro and in vivo and that induce aberrant signaling and biologic functions. We identified RGS2, a regulator of G-protein signaling, as a gene specifically repressed by Flt3-ITD. Here we demonstrate an important role of RGS2 in Flt3-ITD-mediated transformation. RGS2 was repressed after forced expression of activating Flt3 mutations in 2 myeloid cell lines (32Dcl3 and NB4). Furthermore, RGS2 was repressed in Flt3-mutation-positive AML cases in comparison to Flt3-mutation-negative cases, especially in Flt3-ITD-positive cases with a high ITD-to-wild-type (WT) ratio. Coexpression of RGS2 with Flt3-ITD inhibited Flt3-ITD-induced autonomous proliferation and clonal growth of 32D cells. RGS2 also inhibited Flt3-ITD-induced phosphorylation of Akt and glycogen synthase kinase beta (Gsk3-beta) without influencing signal transducer and activator of transcription 5 (STAT5) activation. In addition, RGS2 reinduced the expression of Flt3-ITD-repressed CCAAT/enhancer-binding protein alpha (c/EBPalpha) and antagonized the Flt3-ITD-induced differentiation block in 32D cells. Expression analyses in myeloid cell lines revealed induction of RGS2 during granulocytic but not during monocytic differentiation. Taken together, RGS2 is a novel mediator of myeloid differentiation, and its repression is an important event in Flt3-ITD-induced transformation.


Assuntos
Transformação Celular Neoplásica , Leucemia Mieloide/genética , Mutação , Células Mieloides/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas RGS/genética , Receptores Proteína Tirosina Quinases/genética , Doença Aguda , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HL-60 , Humanos , Leucemia Mieloide/etiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Repressoras , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA