Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(2): 2220-2233, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250424

RESUMO

A series of monometallic Ag(I) and Cu(I) halide complexes bearing 2-(diphenylphosphino)pyridine (PyrPhos, L) as a ligand were synthesized and spectroscopically characterized. The structure of most of the derivatives was unambiguously established by X-ray diffraction analysis, revealing the formation of mono-, di-, and tetranuclear complexes having general formulas MXL3 (M = Cu, X = Cl, Br; M = Ag, X = Cl, Br, I), Ag2X2L3 (X = Cl, Br), and Ag4X4L4 (X = Cl, Br, I). The Ag(I) species were compared to the corresponding Cu(I) analogues from a structural point of view. The formation of Cu(I)/Ag(I) heterobimetallic complexes MM'X2L3 (M/M' = Cu, Ag; X = Cl, Br, I) was also investigated. The X-ray structure of the bromo-derivatives revealed the formation of two possible MM'Br2L3 complexes with Cu/Ag ratios, respectively, of 7:1 and 1:7. The ratio between Cu and Ag was studied by scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) measurements. The structure of the binuclear homo- and heterometallic derivatives was investigated using density functional theory (DFT) calculations, revealing the tendency of the PyrPhos ligands not to maintain the bridging motif in the presence of Ag(I) as the metal center.

2.
Inorg Chem ; 62(38): 15627-15640, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37682719

RESUMO

The synthesis of C∧C∧P pre-ligands based on a dicyclohexylphosphine-substituted biphenyl framework is reported. The pre-ligands form the respective non-palindromic pincer complexes of PtII and PdII via double oxidative addition and subsequent comproportionation or C-H activation. The complexes of PtII as well as PdII emit similar green phosphorescence efficiently in the solid state, the former also in solution albeit with less intensity. The most fascinating photophysical feature, however, is a direct singlet-triplet (S0 → T1) excitation of this phosphorescence in the spectral window between the emission and the major singlet-singlet UV absorption. The S0 → T1 excitation spectra show a rich vibronic pattern, which is especially pronounced for the solid samples at cryogenic temperatures. The molar extinction of the lowest-energy singlet-triplet absorption band of the homologous Pt and Pd complexes as well as that of the Pt complex with a different (NHC) ancillary ligand were determined in tetrahydrofuran solutions. Quantum efficiencies of triplet formation (by intersystem crossing) via the "standard" excitation pathway S0 → Sn → T1 were determined for the Pt complexes and found to be different in dependence of the ancillary ligand.

3.
Chemistry ; 27(17): 5439-5452, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33176033

RESUMO

To develop new and flexible CuI containing luminescent substances, we extend our previous investigations on two metal-centered species to four metal-centered complexes. These complexes could be a basis for designing new organic light-emitting diode (OLED) relevant species. Both the synthesis and in-depth spectroscopic analysis, combined with high-level theoretical calculations are presented on a series of tetranuclear CuI complexes with a halide containing Cu4 X4 core (X=iodide, bromide or chloride) and two 2-(diphenylphosphino)pyridine bridging ligands with a methyl group in para (4-Me) or ortho (6-Me) position of the pyridine ring. The structure of the electronic ground state is characterized by X-ray diffraction, NMR, and IR spectroscopy with the support of theoretical calculations. In contrast to the para system, the complexes with ortho-substituted bridging ligands show a remarkable and reversible temperature-dependent dual phosphorescence. Here, we combine for the first time the luminescence thermochromism with time-resolved FTIR spectroscopy. Thus, we receive experimental data on the structures of the two triplet states involved in the luminescence thermochromism. The transient IR spectra of the underlying triplet metal/halide-to-ligand charge transfer (3 M/XLCT) and cluster-centered (3 CC) states were obtained and interpreted by comparison with calculated vibrational spectra. The systematic and significant dependence of the bridging halides was analyzed.

4.
Phys Chem Chem Phys ; 22(14): 7577-7585, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32227013

RESUMO

We examine the performance of nine commonly used methods for including dispersion interactions in density functional theory (DFT): three different parametrizations of damped 1/Rn terms (n = 6, 8, …) added to the DFT energy (Grimme's D2 and D3 parameterizations as well as that of Tkatchenko and Scheffler), three different implementations of the many-body dispersion approach (MBD, MBD/HI and MBD/FI), the density-dependent energy correction, called dDsC, and two "first generation" van der Waals density functionals, revPBE-vdW and optB86b-vdW. As test set we use eight molecule-surface systems for which agreement has been reached between experiment and hybrid QM:QM calculations within chemical accuracy limits (±4.2 kJ mol-1). It includes adsorption of carbon monoxide and dioxide in the Mg2(2,5-dioxido-1,4-benzenedicarboxylate) metal-organic framework (Mg-MOF-74, CPO-27-Mg), adsorption of carbon monoxide as well as of monolayers of methane and ethane on the MgO(001) surface, as well as adsorption of methane, ethane and propane in H-chabazite (H-CHA). D2 with Ne parameters for Mg2+, D2(Ne), MBD/HI and MBD/FI perform best. With the PBE functional, the mean unsigned errors are 6.1, 5.6 and 5.4 kJ mol-1, respectively.

5.
Dalton Trans ; 48(41): 15687-15698, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31524902

RESUMO

Luminescent Cu(i) AlkylPyrPhos complexes with a butterfly-shaped Cu2I2 core and halogen containing ancillary ligands, with a special focus on fluorine, have been investigated in this study. These complexes show extremely high solubilities and a remarkable (photo)chemical stability in a series of solvents. A tunable emission resulting from thermally activated delayed fluorescence with high quantum yields was determined by luminescence and lifetime investigations in solvents and solids. Structures of the electronic ground states were analyzed by single crystal X-ray analysis. The structure of the lowest excited triplet state was determined by transient FTIR spectroscopy, in combination with quantum chemical calculations. With the obtained range of compounds we address the key requirement for the production of organic light emitting diodes based on solution processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...