Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108269, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026185

RESUMO

Atherosclerotic cardiovascular disease is characterized by both chronic low-grade inflammation and dyslipidemia. The AMP-activated protein kinase (AMPK) inhibits cholesterol synthesis and dampens inflammation but whether pharmacological activation reduces atherosclerosis is equivocal. In the current study, we found that the orally bioavailable and highly selective activator of AMPKß1 complexes, PF-06409577, reduced atherosclerosis in two mouse models in a myeloid-derived AMPKß1 dependent manner, suggesting a critical role for macrophages. In bone marrow-derived macrophages (BMDMs), PF-06409577 dose dependently activated AMPK as indicated by increased phosphorylation of downstream substrates ULK1 and acetyl-CoA carboxylase (ACC), which are important for autophagy and fatty acid oxidation/de novo lipogenesis, respectively. Treatment of BMDMs with PF-06409577 suppressed fatty acid and cholesterol synthesis and transcripts related to the inflammatory response while increasing transcripts important for autophagy through AMPKß1. These data indicate that pharmacologically targeting macrophage AMPKß1 may be a promising strategy for reducing atherosclerosis.

2.
Nature ; 619(7968): 143-150, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380764

RESUMO

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Assuntos
Metabolismo Energético , Fator 15 de Diferenciação de Crescimento , Músculo Esquelético , Redução de Peso , Animais , Humanos , Camundongos , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Restrição Calórica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Receptores Adrenérgicos beta/metabolismo , Redução de Peso/efeitos dos fármacos
3.
Commun Biol ; 5(1): 132, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169231

RESUMO

Atherosclerosis is a chronic inflammatory condition in which macrophages play a major role. Janus kinase 2 (JAK2) is a pivotal molecule in inflammatory and metabolic signaling, and Jak2V617F activating mutation has recently been implicated with enhancing clonal hematopoiesis and atherosclerosis. To determine the essential in vivo role of macrophage (M)-Jak2 in atherosclerosis, we generate atherosclerosis-prone ApoE-null mice deficient in M-Jak2. Contrary to our expectation, these mice exhibit increased plaque burden with no differences in macrophage proliferation, recruitment or bone marrow clonal expansion. Notably, M-Jak2-deficient bone marrow derived macrophages show a significant defect in cholesterol efflux. Pharmacologic JAK2 inhibition with ruxolitinib also leads to defects in cholesterol efflux and accelerates atherosclerosis. Liver X receptor agonist abolishes the efflux defect and attenuates the accelerated atherosclerosis that occurs with M-Jak2 deficiency. Macrophages of individuals with the Jak2V617F mutation show increased efflux which is normalized when treated with a JAK2 inhibitor. Together, M-Jak2-deficiency leads to accelerated atherosclerosis primarily through defects in cholesterol efflux from macrophages.


Assuntos
Aterosclerose , Colesterol , Janus Quinase 2 , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Janus Quinase 2/deficiência , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Metab ; 53: 101321, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425254

RESUMO

OBJECTIVE: Salsalate is a prodrug of salicylate that lowers blood glucose in people with type 2 diabetes. AMP-activated protein kinase (AMPK) is an αßγ heterotrimer which inhibits macrophage inflammation and the synthesis of fatty acids and cholesterol in the liver through phosphorylation of acetyl-CoA carboxylase (ACC) and HMG-CoA reductase (HMGCR), respectively. Salicylate binds to and activates AMPKß1-containing heterotrimers that are highly expressed in both macrophages and liver, but the potential importance of AMPK and ability of salsalate to reduce atherosclerosis have not been evaluated. METHODS: ApoE-/- and LDLr-/- mice with or without (-/-) germline or bone marrow AMPKß1, respectively, were treated with salsalate, and atherosclerotic plaque size was evaluated in serial sections of the aortic root. Studies examining the effects of salicylate on markers of inflammation, fatty acid and cholesterol synthesis and proliferation were conducted in bone marrow-derived macrophages (BMDMs) from wild-type mice or mice lacking AMPKß1 or the key AMPK-inhibitory phosphorylation sites on ACC (ACC knock-in (KI)-ACC KI) or HMGCR (HMGCR-KI). RESULTS: Salsalate reduced atherosclerotic plaques in the aortic roots of ApoE-/- mice, but not ApoE-/- AMPKß1-/- mice. Similarly, salsalate reduced atherosclerosis in LDLr-/- mice receiving wild-type but not AMPKß1-/- bone marrow. Reductions in atherosclerosis by salsalate were associated with reduced macrophage proliferation, reduced plaque lipid content and reduced serum cholesterol. In BMDMs, this suppression of proliferation by salicylate required phosphorylation of HMGCR and the suppression of cholesterol synthesis. CONCLUSIONS: These data indicate that salsalate suppresses macrophage proliferation and atherosclerosis through an AMPKß1-dependent pathway, which may involve HMGCR phosphorylation and cholesterol synthesis. Since rapidly-proliferating macrophages are a hallmark of atherosclerosis, these data indicate further evaluation of salsalate as a potential therapeutic agent for treating atherosclerotic cardiovascular disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/metabolismo , Salicilatos/metabolismo , Proteínas Quinases Ativadas por AMP/deficiência , Animais , Células Cultivadas , Camundongos , Camundongos Knockout
5.
Am J Physiol Gastrointest Liver Physiol ; 321(3): G280-G297, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288735

RESUMO

Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs), contributing to tissue stiffening and luminal narrowing. Human nuclear receptor 4A 1 (NR4A1) was previously reported to regulate mesenchymal cell function and dampen fibrogenic signaling. NR4A1 gene variants are associated with IBD risk, and it has been shown to regulate intestinal inflammation. Here, we tested the hypothesis that NR4A1 acts as a negative regulator of intestinal fibrosis through regulating myofibroblast function. Using the SAMP1/YitFc mouse, we tested whether two pharmacological agents known to enhance NR4A1 signaling, cytosporone B (Csn-B) or 6-mercaptopurine (6-MP), could reduce fibrosis. We also used the dextran sulfate sodium (DSS) model of colitis and assessed the magnitude of colonic fibrosis in mouse nuclear receptor 4A 1 (Nr4a1-/-) and their wild-type littermates (Nr4a1+/+). Lastly, intestinal myofibroblasts isolated from Nr4a1-/- and Nr4a1+/+ mice or primary human intestinal myofibroblasts were stimulated with transforming growth factor-ß1 (TGF-ß1), in the presence or absence of Csn-B or 6-MP, and proliferation and ECM gene expression assessed. Csn-B or 6-MP treatment significantly reduced ileal thickness, collagen, and overall ECM content in SAMP1/YitFc mice. This was associated with a reduction in proliferative markers within the mesenchymal compartment. Nr4a1-/- mice exposed to DSS exhibited increased colonic thickening and ECM content. Nr4a1-/- myofibroblasts displayed enhanced TGF-ß1-induced proliferation. Furthermore, Csn-B or 6-MP treatment was antiproliferative in Nr4a1+/+ but not Nr4a1-/- cells. Lastly, activating NR4A1 in human myofibroblasts reduced TGF-ß1-induced collagen deposition and fibrosis-related gene expression. Our data suggest that NR4A1 can attenuate fibrotic processes in intestinal myofibroblasts and could provide a valuable clinical target to treat inflammation-associated intestinal fibrosis.NEW & NOTEWORTHY Fibrosis and increased muscle thickening contribute to stricture formation and intestinal obstruction, a complication that occurs in 30%-50% of patients with CD within 10 yr of disease onset. More than 50% of those who undergo surgery to remove the obstructed bowel will experience stricture recurrence. To date, there are no drug-based approaches approved to treat intestinal strictures. In the current submission, we identify NR4A1 as a novel target to treat inflammation-associated intestinal fibrosis.


Assuntos
Fibrose/metabolismo , Inflamação/metabolismo , Miofibroblastos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Células Cultivadas , Humanos , Intestinos/patologia , Camundongos , Transdução de Sinais/fisiologia
6.
Mol Metab ; 42: 101081, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32941994

RESUMO

OBJECTIVE: Obesity results in lymphatic dysfunction, but the cellular mechanisms that mediate this effect remain largely unknown. Previous studies in obese mice have shown that inducible nitric oxide synthase-expressing (iNOS+) inflammatory cells accumulate around lymphatic vessels. In the current study, we therefore tested the hypothesis that increased expression of iNOS results in nitrosative stress and injury to the lymphatic endothelial cells (LECs). In addition, we tested the hypothesis that lymphatic injury, independent of obesity, can modulate glucose and lipid metabolism. METHODS: We compared the metabolic changes and lymphatic function of wild-type and iNOS knockout mice fed a normal chow or high-fat diet for 16 weeks. To corroborate our in vivo findings, we analyzed the effects of reactive nitrogen species on isolated LECs. Finally, using a genetically engineered mouse model that allows partial ablation of the lymphatic system, we studied the effects of acute lymphatic injury on glucose and lipid metabolism in lean mice. RESULTS: The mesenteric lymphatic vessels of obese wild-type animals were dilated, leaky, and surrounded by iNOS+ inflammatory cells with resulting increased accumulation of reactive nitrogen species when compared with lean wild-type or obese iNOS knockout animals. These changes in obese wild-type mice were associated with systemic glucose and lipid abnormalities, as well as decreased mesenteric LEC expression of lymphatic-specific genes, including vascular endothelial growth factor receptor 3 (VEGFR-3) and antioxidant genes as compared with lean wild-type or obese iNOS knockout animals. In vitro experiments demonstrated that isolated LECs were more sensitive to reactive nitrogen species than blood endothelial cells, and that this sensitivity was ameliorated by antioxidant therapies. Finally, using mice in which the lymphatics were specifically ablated using diphtheria toxin, we found that the interaction between metabolic abnormalities caused by obesity and lymphatic dysfunction is bidirectional. Targeted partial ablation of mesenteric lymphatic channels of lean mice resulted in increased accumulation of iNOS+ inflammatory cells and increased reactive nitrogen species. Lymphatic ablation also caused marked abnormalities in insulin sensitivity, serum glucose and insulin concentrations, expression of insulin-sensitive genes, lipid metabolism, and significantly increased systemic and mesenteric white adipose tissue (M-WAT) inflammatory responses. CONCLUSIONS: Our studies suggest that increased iNOS production in obese animals plays a key role in regulating lymphatic injury by increasing nitrosative stress. In addition, our studies suggest that obesity-induced lymphatic injury may amplify metabolic abnormalities by increasing systemic and local inflammatory responses and regulating insulin sensitivity. These findings suggest that manipulation of the lymphatic system may represent a novel means of treating metabolic abnormalities associated with obesity.


Assuntos
Células Endoteliais/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Nitrosativo/imunologia , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Células Endoteliais/metabolismo , Glucose , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Linfonodos/metabolismo , Linfonodos/fisiologia , Vasos Linfáticos/lesões , Vasos Linfáticos/metabolismo , Vasos Linfáticos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo II/genética , Estresse Nitrosativo/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia
7.
Cancer Immunol Res ; 7(8): 1345-1358, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31186247

RESUMO

Proliferation of aberrant, dysfunctional lymphatic vessels around solid tumors is a common histologic finding. Studies have shown that abnormalities in lymphatic function result in accumulation of inflammatory cells with an immunosuppressive profile. We tested the hypothesis that dysfunctional lymphatic vessels surrounding solid tumors regulate changes in the tumor microenvironment and tumor-specific immune responses. Using subcutaneously implanted mouse melanoma and breast cancer tumors in a lymphatic endothelial cell-specific diphtheria toxin receptor transgenic mouse, we found that local ablation of lymphatic vessels increased peritumoral edema, as compared with controls. Comparative analysis of the peritumoral fluid demonstrated increases in the number of macrophages, CD4+ inflammatory cells, F4/80+/Gr-1+ (myeloid-derived suppressor cells), CD4+/Foxp3+ (Tregs) immunosuppressive cells, and expression of inflammatory cytokines such as TNFα, IFNγ, and IL1ß following lymphatic ablation. Tumors grown in lymphatic ablated mice exhibited reduced intratumoral accumulation of cytotoxic T cells and increased tumor PD-L1 expression, causing rapid tumor growth, compared with tumors grown in nonlymphatic-ablated mice. Our study suggests that lymphatic dysfunction plays a role in regulating tumor microenvironments and may be therapeutically targeted in combination with immunotherapy to prevent tumor growth and progression.


Assuntos
Imunomodulação , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia , Animais , Biomarcadores Tumorais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Edema , Feminino , Inflamação , Sistema Linfático , Vasos Linfáticos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Melanoma Experimental , Camundongos
8.
Transl Res ; 209: 68-76, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022376

RESUMO

Secondary lymphedema is a common complication of cancer treatment resulting in progressive fibroadipose tissue deposition, increased risk of infections, and, in rare cases, secondary malignancies. Until recently, the pathophysiology of secondary lymphedema was thought to be related to impaired collateral lymphatic formation after surgical injury. However, more recent studies have shown that chronic inflammation-induced fibrosis plays a key role in the pathophysiology of this disease. In this review, we will discuss the evidence supporting this hypothesis and summarize recent publications demonstrating that lymphatic injury activates chronic immune responses that promote fibrosis and lymphatic leakiness, decrease collecting lymphatic pumping, and impair collateral lymphatic formation. We will review how chronic mixed T-helper cell inflammatory reactions regulate this process and how this response may be used to design novel therapies for lymphedema.


Assuntos
Vasos Linfáticos/patologia , Linfedema/patologia , Fibrose , Humanos , Vasos Linfáticos/lesões , Linfedema/imunologia , Ativação Linfocitária/imunologia , Modelos Biológicos , Linfócitos T/imunologia
9.
Front Immunol ; 10: 470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936872

RESUMO

The lymphatic vasculature has traditionally been thought to play a passive role in the regulation of immune responses by transporting antigen presenting cells and soluble antigens to regional lymph nodes. However, more recent studies have shown that lymphatic endothelial cells regulate immune responses more directly by modulating entry of immune cells into lymphatic capillaries, presenting antigens on major histocompatibility complex proteins, and modulating antigen presenting cells. Secondary lymphedema is a disease that develops when the lymphatic system is injured during surgical treatment of cancers or is damaged by infections. We have used mouse models of lymphedema in order to understand the effects of chronic lymphatic injury on immune responses and have shown that lymphedema results in a mixed T helper cell and T regulatory cell (Treg) inflammatory response. Prolonged T helper 2 biased immune responses in lymphedema regulate the pathology of this disease by promoting tissue fibrosis, inhibiting formation of collateral lymphatics, decreasing lymphatic vessel pumping capacity, and increasing lymphatic leakiness. Treg infiltration following lymphatic injury results from proliferation of natural Tregs and suppresses innate and adaptive immune responses. These studies have broad clinical relevance since understanding how lymphatic injury in lymphedema can modulate immune responses may provide a template with which we can study more subtle forms of lymphatic injury that may occur in physiologic conditions such as aging, obesity, metabolic tumors, and in the tumor microenvironment.


Assuntos
Sistema Linfático/imunologia , Linfedema/imunologia , Subpopulações de Linfócitos T/imunologia , Alarminas/biossíntese , Alarminas/genética , Alarminas/imunologia , Animais , Movimento Celular , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Fibrose , Humanos , Inflamação , Excisão de Linfonodo/efeitos adversos , Linfonodos/imunologia , Metástase Linfática , Vasos Linfáticos/imunologia , Vasos Linfáticos/fisiopatologia , Linfedema/epidemiologia , Linfedema/etiologia , Ativação Linfocitária , Ativação de Macrófagos , Camundongos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia
10.
Nat Commun ; 9(1): 1970, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773802

RESUMO

T cell-mediated responses have been implicated in the development of fibrosis, impaired lymphangiogenesis, and lymphatic dysfunction in secondary lymphedema. Here we show that CD4+ T cells are necessary for lymphedema pathogenesis by utilizing adoptive transfer techniques in CD4 knockout mice that have undergone tail skin and lymphatic excision or popliteal lymph node dissection. We also demonstrate that T cell activation following lymphatic injury occurs in regional skin-draining lymph nodes after interaction with antigen-presenting cells such as dendritic cells. CD4+ T cell activation is associated with differentiation into a mixed T helper type 1 and 2 phenotype, as well as upregulation of adhesion molecules and chemokines that promote migration to the skin. Most importantly, we find that blocking T cell release from lymph nodes using a sphingosine-1-phosphate receptor modulator prevents lymphedema, suggesting that this approach may have clinical utility.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunossupressores/uso terapêutico , Linfedema/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Antígenos CD4/genética , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Humanos , Imunossupressores/farmacologia , Linfonodos/citologia , Linfonodos/patologia , Linfangiogênese/imunologia , Vasos Linfáticos/citologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/patologia , Linfedema/tratamento farmacológico , Linfedema/patologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Lisoesfingolipídeo/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Pele/citologia , Pele/imunologia
11.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G408-G417, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351397

RESUMO

Inflammatory bowel disease (IBD) has a complex pathophysiology with limited treatments. Structural and functional changes in the intestinal lymphatic system have been associated with the disease, with increased risk of IBD occurrence linked to a history of acute intestinal injury. To examine the potential role of the lymphatic system in inflammation recurrence, we evaluated morphological and functional changes in mouse mucosal and mesenteric lymphatic vessels, and within the mesenteric lymph nodes during acute ileitis caused by a 7-day treatment with dextran sodium sulfate (DSS). We monitored whether the changes persisted during a 14-day recovery period and determined their potential consequences on dendritic cell (DC) trafficking between the mucosa and lymphoid tissues. DSS administration was associated with marked lymphatic abnormalities and dysfunctions exemplified by lymphangiectasia and lymphangiogenesis in the ileal mucosa and mesentery, increased mesenteric lymphatic vessel leakage, and lymphadenopathy. Lymphangiogenesis and lymphadenopathy were still evident after recovery from intestinal inflammation and correlated with higher numbers of DCs in mucosal and lymphatic tissues. Specifically, a deficit in CD103+ DCs observed during acute DSS in the lamina propria was reversed and further enhanced during recovery. We concluded that an acute intestinal insult caused alterations of the mesenteric lymphatic system, including lymphangiogenesis, which persisted after resolution of inflammation. These morphological and functional changes could compromise DC function and movement, increasing susceptibility to further gastrointestinal disease. Elucidation of the changes in mesenteric and intestinal lymphatic function should offer key insights for new therapeutic strategies in gastrointestinal disorders such as IBD. NEW & NOTEWORTHY Lymphatic integrity plays a critical role in small intestinal homeostasis. Acute intestinal insult in a mouse model of acute ileitis causes morphological and functional changes in mesenteric and intestinal lymphatic vessels. While some of the changes significantly regressed during inflammation resolution, others persisted, including lymphangiogenesis and altered dendritic cell function and movement, potentially increasing susceptibility to the recurrence of gastrointestinal inflammation.


Assuntos
Ileíte/patologia , Íleo/patologia , Mucosa Intestinal/patologia , Linfonodos/patologia , Linfangiectasia Intestinal/patologia , Linfangiogênese , Vasos Linfáticos/patologia , Animais , Antígenos CD/metabolismo , Movimento Celular , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Ileíte/induzido quimicamente , Ileíte/metabolismo , Íleo/metabolismo , Cadeias alfa de Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Linfonodos/metabolismo , Linfangiectasia Intestinal/induzido quimicamente , Linfangiectasia Intestinal/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fatores de Tempo
12.
Microcirculation ; 24(3)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28231612

RESUMO

OBJECTIVE: Mesenteric lymphatic vessel pumping, important to propel lymph and immune cells from the intestinal interstitium to the mesenteric lymph nodes, is compromised during intestinal inflammation. The objective of this study was to test the hypothesis that the pro-inflammatory cytokine TNF-α, is a significant contributor to the inflammation-induced lymphatic contractile dysfunction, and to determine its mode of action. METHODS: Contractile parameters were obtained from isolated rat mesenteric lymphatic vessels mounted on a pressure myograph after 24-hours incubation with or without TNF-α. Various inhibitors were administered, and quantitative real-time PCR, Western blotting, and immunofluorescence confocal imaging were applied to characterize the mechanisms involved in TNF-α actions. RESULTS: Vessel contraction frequency was significantly decreased after TNF-α treatment and could be restored by selective inhibition of NF-кB, iNOS, guanylate cyclase, and ATP-sensitive K+ channels. We further demonstrated that NF-кB inhibition also suppressed the significant increase in iNOS mRNA observed in TNF-α-treated lymphatic vessels and that TNF-α treatment favored the nuclear translocation of the p65 NF-κB subunit. CONCLUSIONS: These findings suggest that TNF-α decreases mesenteric lymphatic contractility by activating the NF-κB-iNOS signaling pathway. This mechanism could contribute to the alteration of lymphatic pumping reported in intestinal inflammation.


Assuntos
Vasos Linfáticos/fisiopatologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Animais , Inflamação/metabolismo , Mesentério/irrigação sanguínea , Contração Muscular/efeitos dos fármacos , Ratos
13.
Am J Pathol ; 187(4): 798-807, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28183530

RESUMO

Chronic inflammatory diseases are associated with a persistent and enhanced response to environmental antigens. As an adaptive response to this exaggerated immune state, affected tissue typically develops tertiary lymphoid organs. Studies of Crohn disease (CD), a chronic inflammatory disease of the intestinal tract, report tertiary lymphoid organs present within the mucosal wall, along with other lymphatic diseases, such as lymphangiogenesis and obstructed lymphatic vessels. These observations suggest that downstream mesenteric lymphatic vessels and lymph drainage into mesenteric lymph nodes may be compromised. However, information is lacking on the morphologic features and functional status of mesenteric lymphatics in CD. Using confocal imaging, PCR, flow cytometry, and functional strategies, we addressed these questions in the established TNFΔARE mouse model of CD and found that this mouse model had many lymphatic abnormalities reminiscent of human CD. These abnormalities include intestinal lymphangiectasia, mesenteric lymph node lymphadenopathy, and lymphangiogenesis in both the mesentery and mucosa. Critically, TNFΔARE mice also present mesenteric tertiary lymphoid organs and have altered lymphatic transport of dendritic cells to mesenteric lymph nodes, two features likely to actively modulate immunity. Our findings provide key insights into lymphatic remodeling in the TNFΔARE mouse model. They shed light on the involvement of these lymphatic changes in immune dysfunctions observed in CD and suggest the lymphatic system as new target for therapeutic options.


Assuntos
Linfonodos/patologia , Sistema Linfático/anormalidades , Sistema Linfático/patologia , Mesentério/patologia , Animais , Transporte Biológico , Receptor 1 de Quimiocina CX3C , Doença Crônica , Células Dendríticas/metabolismo , Ileíte/patologia , Íleo/patologia , Metabolismo dos Lipídeos , Linfadenopatia/patologia , Linfangiogênese , Camundongos Transgênicos , Receptores CCR7/metabolismo , Receptores de Quimiocinas/metabolismo
14.
Prostaglandins Other Lipid Mediat ; 116-117: 37-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25526689

RESUMO

Prostaglandins are important mediators responsible for many changes that occur during the inflammatory response. Specifically, in inflammatory bowel disease (IBD), prostaglandins are key players in maintenance of blood flow and mucosal defense. In blood vessels, prostaglandins modulate and inhibit transmigration. In lymphatic vessels, on the other hand, prostaglandin E2 (PGE2) and prostacyclin (PGI2) have been shown to potently inhibit lymphatic contractility. Inhibition of lymphatic contractility could impair proper tissue fluid drainage during inflammation, consequently leading to the submucosal oedema observed in IBD. Alterations in production of PGE2 and PGI2 during inflammation could have severe implications on lymphatic and vascular functions within the small intestine. Using the 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced ileitis guinea pig and rat models, we assessed by quantitative PCR changes in mRNA transcript of enzymes and receptors involved in the production and actions of prostaglandins in mesenteric lymphatic and blood vessels as well as in the affected ileum. Furthermore, we also assessed lymphatic tissue levels of PGE2 and PGI2 during inflammation. We observed significant changes in lymphatic mRNA expression of COX-1, COX-2, MPGES-1, PGIS, EP4 and IP and increases in PGE2 and PGI2 in tissues of TNBS-treated animals. Changes in mRNA in blood vessels from TNBS-treated animals included differences in COX-1, COX-2, MPGES-1, PGIS, EP1, EP2 and IP expression. Prostaglandin metabolites are differentially regulated in both lymphatic and blood vessels during intestinal inflammation.


Assuntos
Dinoprostona/metabolismo , Epoprostenol/metabolismo , Ileíte/metabolismo , Intestino Delgado/metabolismo , Vasos Linfáticos/metabolismo , Mesentério , Animais , Cobaias , Ileíte/induzido quimicamente , Ileíte/patologia , Intestino Delgado/patologia , Vasos Linfáticos/patologia , Mesentério/metabolismo , Mesentério/patologia , Ratos , Circulação Esplâncnica
15.
J Physiol ; 590(11): 2677-91, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22451438

RESUMO

Lymphatic vessels serve as a route by which interstitial fluid, protein and other macromolecules are returned to the blood circulation and immune cells and antigens gain access to lymph nodes. Lymph flow is an active process promoted by rhythmical contraction-relaxation events occurring in the collecting lymphatic vessels. This lymphatic pumping is an intrinsic property of the lymphatic muscles in the vessel wall and consequent to action potentials. Compromised lymphatic pumping may affect lymph and immune cell transport, an action which could be particularly detrimental during inflammation. Importantly, many inflammatory mediators alter lymphatic pumping. Vasoactive intestinal peptide (VIP) is a neuro- and immuno-modulator thought to be released by nerve terminals and immune cells in close proximity to lymphatic vessels. We demonstrated the presence of the peptide in lymphatic vessels and in the lymph and examined the effects of VIP on mesenteric collecting lymphatic vessels of the guinea pig using pharmacological bioassays, intracellular microelectrode electrophysiology, immunofluorescence and quantitative real-time PCR. We showed that VIP alters lymphatic pumping by decreasing the frequency of lymphatic contractions and hyperpolarizing the lymphatic muscle membrane potential in a concentration-dependent manner. Our data further suggest that these effects are mainly mediated by stimulation of the VIP receptor VPAC2 located on the lymphatic muscle and the downstream involvement of protein kinase A (PKA) and ATP-sensitive K⁺ (KATP) channels. Inhibition of lymphatic pumping by VIP may compromise lymph drainage, oedema resolution and immune cell trafficking to the draining lymph nodes.


Assuntos
Vasos Linfáticos/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Animais , Cobaias , Técnicas In Vitro , Potenciais da Membrana
16.
Curr Opin Gastroenterol ; 27(4): 335-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21543977

RESUMO

PURPOSE OF REVIEW: Intestinal lymph containing interstitial fluid, proteins, immune cells, and digested lipids is actively transported back to the blood stream thanks to rhythmical contractions of the mesenteric lymphatic vessels. During this process, lymph flows through several lymph nodes, allowing antigens to be sampled by the immune system. Abnormalities in lymphatic drainage have been noted in the original descriptions of Crohn's disease, but essentially ignored since. The lymphatic system is re-emerging as a critical player in inflammatory and immune processes and the purpose of this review is to present and discuss new concepts related to the involvement of the lymphatic system in the development of inflammatory bowel diseases (IBDs) and more specifically Crohn's disease. RECENT FINDINGS: Recent studies reporting lymphangitis, lymphangiogenesis, bacterial infiltration and lymph node infection, immune cell trafficking, and fat-wrapping in Crohn's disease suggest altered lymph drainage and lymphatic pumping, implicating the lymphatic system as a likely player in inflammatory disorders and IBDs. SUMMARY: Improved knowledge and appreciation of the roles that the lymphatic system plays in immune cell trafficking, infection, fat transport, distribution and metabolism and, of course, edema resolution is necessary to better understand the pathogenesis of chronic inflammatory conditions such as Crohn's disease and may provide the basis for new therapeutic strategies.


Assuntos
Doença de Crohn/imunologia , Linfangite/complicações , Sistema Linfático/fisiopatologia , Humanos , Linfangiogênese/fisiologia , Sistema Linfático/imunologia , Sistema Linfático/microbiologia
17.
Ann N Y Acad Sci ; 1207 Suppl 1: E69-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20961308

RESUMO

The role of the lymphatic circulation to actively remove fluid, cells, proteins, and other particles from the interstitium to prevent mounting edema is well appreciated, but whether and how this function is compromised during inflammation has been scarcely investigated. We discuss here the mechanisms of lymphatic pumping and their modulation in inflammatory conditions or by inflammatory mediators in the context of inflammatory bowel disease (IBD), an ensemble of disorders typically described with abnormal or dysfunctional intestinal or mesenteric lymphatic vessels. We report our findings showing impaired mesenteric lymphatic contractile activity in an animal model of intestinal inflammation that recapitulates some features of IBD and suggests a role for prostanoids in this dysfunction. With the knowledge that prostaglandin E(2) and prostacyclin are implicated in IBD pathogenesis and induce a potent inhibition of lymphatic pumping, we established the pharmacological profile for these prostaglandin receptors in mesenteric lymphatic vessels and their respective role in pumping inhibition. Inhibition of mesenteric lymphatic pumping during inflammation may be a cause of edema, compromised immune response, and granuloma associated with IBD.


Assuntos
Doenças Inflamatórias Intestinais/fisiopatologia , Vasos Linfáticos/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/fisiologia , Contração Muscular , Músculo Liso/fisiopatologia , Prostaglandinas/fisiologia
18.
Br J Pharmacol ; 158(8): 1961-70, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19922540

RESUMO

BACKGROUND AND PURPOSE: Rhythmical transient constrictions of the lymphatic vessels provide the means for efficient lymph drainage and interstitial tissue fluid balance. This activity is critical during inflammation, to avoid or limit oedema resulting from increased vascular permeability, mediated by the release of various inflammatory mediators. In this study, we investigated the mechanisms by which prostaglandin E(2) (PGE(2)) and prostacyclin modulate lymphatic contractility in isolated guinea pig mesenteric lymphatic vessels. EXPERIMENTAL APPROACH: Quantitative RT-PCR was used to assess the expression of mRNA for enzymes and receptors involved in the production and action of PGE(2) and prostacyclin in mesenteric collecting lymphatic vessels. Frequency and amplitude of lymphatic vessel constriction were measured in the presence of these prostaglandins and the role of their respective EP and IP receptors assessed. KEY RESULTS: Prostaglandin E(2) and prostacyclin decreased concentration-dependently the frequency, without affecting the amplitude, of lymphatic constriction. Data obtained in the presence of the EP(4) receptor antagonists, GW627368x (1 microM) and AH23848B (30 microM) and the IP receptor antagonist CAY10441 (0.1 microM) suggest that PGE(2) predominantly activates EP(4), whereas prostacyclin mainly stimulates IP receptors. Inhibition of responses to either prostaglandin with H89 (10 microM) or glibenclamide (1 microM) suggested a role for the activation of protein kinase A and ATP-sensitive K(+) channels. CONCLUSIONS AND IMPLICATIONS: Our findings characterized the inhibition of lymphatic pumping induced by PGE(2) or prostacyclin in guinea pig mesenteric lymphatics. This action is likely to impair oedema resolution and to contribute to the pro-inflammatory actions of these prostaglandins.


Assuntos
Dinoprostona/farmacologia , Epoprostenol/farmacologia , Receptores de Epoprostenol/efeitos dos fármacos , Receptores de Prostaglandina E/efeitos dos fármacos , Animais , Dinoprostona/administração & dosagem , Dinoprostona/toxicidade , Relação Dose-Resposta a Droga , Edema/etiologia , Edema/fisiopatologia , Epoprostenol/administração & dosagem , Epoprostenol/toxicidade , Cobaias , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Masculino , Mesentério/efeitos dos fármacos , Mesentério/metabolismo , Contração Muscular/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Epoprostenol/metabolismo , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E Subtipo EP4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
PLoS One ; 4(8): e6585, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19668376

RESUMO

BACKGROUND: Most studies investigating the neurobiology of depression and suicide have focused on the serotonergic system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated. Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes that may be at play. In this study we investigated brain regions that are known to be implicated in the neurobiology of suicide and major depression are likely to represent valid global molecular alterations. METHODOLOGY/PRINCIPAL FINDINGS: We performed gene expression analysis using the HG-U133AB chipset in 17 cortical and subcortical brain regions from suicides with and without major depression and controls. Total mRNA for microarray analysis was obtained from 663 brain samples isolated from 39 male subjects, including 26 suicide cases and 13 controls diagnosed by means of psychological autopsies. Independent brain samples from 34 subjects and animal studies were used to control for the potential confounding effects of comorbidity with alcohol. Using a Gene Ontology analysis as our starting point, we identified molecular pathways that may be involved in depression and suicide, and performed follow-up analyses on these possible targets. Methodology included gene expression measures from microarrays, Gene Score Resampling for global ontological profiling, and semi-quantitative RT-PCR. We observed the highest number of suicide specific alterations in prefrontal cortical areas and hippocampus. Our results revealed alterations of synaptic neurotransmission and intracellular signaling. Among these, Glutamatergic (GLU) and GABAergic related genes were globally altered. Semi-quantitative RT-PCR results investigating expression of GLU and GABA receptor subunit genes were consistent with microarray data. CONCLUSIONS/SIGNIFICANCE: The observed results represent the first overview of global expression changes in brains of suicide victims with and without major depression and suggest a global brain alteration of GLU and GABA receptor subunit genes in these conditions.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Suicídio , Ácido gama-Aminobutírico/metabolismo , Adulto , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...