Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(38): 33942-33948, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188238

RESUMO

A one-step coprecipitation process is designed to synthesize zinc hexacyanoferrate (ZnHCF) cathodes in aqueous zinc-ion batteries (ZIBs). The morphology of the cathode is influenced by the concentration of the precursor solution and valence of iron ions. The rhombohedral ZnHCF sample exhibits high crystallinity on the microscale in the cut-angle cubic structure, whereas Na-rich NaZnHCF contains many interstitial water molecules in the rhombic nanoplates. Both samples show effective insertion of Zn ions in the aqueous ZnSO4 solution. ZnHCF shows a specific capacity of 66.7 mA h g-1, a redox voltage of 1.73 V, and fast decline in a few cycles. On the other hand, NaZnHCF has a lower specific capacity of 48.2 mA h g-1, showing two voltage platforms and robust cycling stability. However, owing to serious side reactions, both samples have low Columbic efficiency. To improve the properties such as Coulombic efficiency, specific capacity, and cycling stability, Ni ions are introduced by adding 10 wt % NiSO4 to the ZnSO4 electrolyte. The ZnHCF cathode in the Ni-containing electrolyte has the best properties such as a high specific capacity of 71.2 mA h g-1 at a current density of 100 mA g-1, 93% retention of the Coulombic efficiency, and a good rate performance manifested by a reversible capacity of 58.2 mA h g-1 at 1 A g-1. The results reveal a strategy to improve the electrochemical properties of aqueous ZIBs by modifying the electrolytes.

2.
ACS Omega ; 6(34): 22188-22201, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497910

RESUMO

A novel copper-based catalyst supported by a long-chain hydrocarbon stearic acid (Cu x O@C18H36O2) was synthesized by a hydrothermal method and double replacement reactions. The as-prepared catalyst is shown as self-assembled hierarchical nanoflakes with an average size of ∼22 nm and a specific surface area of 51.4 m2 g-1. The catalyst has a good performance on adsorption as well as Fenton-like catalytic degradation of Rhodamine B (RhB). The catalyst (10 mg/L) showed an excellent adsorption efficiency toward RhB (20 mg/L) for pH ranging from 5 to 13, with the highest adsorption rate (99%) exhibited at pH 13. The Fenton-like catalytic degradation reaction of RhB (20 mg/L) by Cu x O@C18H36O2 nanoflakes was effective over a wide range of pH of 3-11, and •OH radicals were generated via Cu2O/H2O2 interactions in acidic conditions and CuO/H2O2 reactions in a neutral solution. The highest efficiency catalytic degradation of RhB (20 mg/L) was 99.2% under acidic conditions (pH = 3, H2O2 = 0.05 M), with an excellent reusability of 96% at the 6th cycle. The results demonstrated that the as-prepared Cu x O@C18H36O2 nanoflakes are an efficient candidate for wastewater treatment, with excellent adsorption capacity and superior Fenton-like catalytic efficiency and stability for RhB.

3.
RSC Adv ; 10(45): 27033-27041, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515809

RESUMO

Prussian blue analogs (PBAs) are attractive cathode candidates for high energy density, including long life-cycle rechargeable batteries, due to their non-toxicity, facile synthesis techniques and low cost. Nevertheless, traditionally synthesized PBAs tend to have a flawed crystal structure with a large amount of [Fe(CN)6]4- openings and the presence of crystal water in the framework; therefore the specific capacity achieved has continuously been low with poor cycling stability. Herein, we demonstrate low-defect and sodium-enriched nickel hexacyanoferrate nanocrystals synthesized by a facile low-speed co-precipitation technique assisted by a chelating agent to overcome these problems. As a consequence, the prepared high-quality nickel hexacyanoferrate (HQ-NiHCF) exhibited a high specific capacity of 80 mA h g-1 at 15 mA g-1 (with a theoretical capacity of ∼85 mA h g-1), maintaining a notable cycling stability (78 mA h g-1 at 170 mA g-1 current density) without noticeable fading in capacity retention after 1200 cycles. This low-speed synthesis strategy for PBA-based electrode materials could be also extended to other energy storage materials to fabricate high-performance rechargeable batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA