Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677253

RESUMO

Porous carbons are highly attractive and demanding materials which could be prepared using biomass waste; thus, they are promising for enhanced electrochemical capacitive performance in capacitors and cycling efficiency in Li-ion batteries. Herein, biomass (rice husk)-derived activated carbon was synthesized via a facile chemical route and used as anode materials for Li-ion batteries. Various characterization techniques were used to study the structural and morphological properties of the prepared activated carbon. The prepared activated carbon possessed a carbon structure with a certain degree of amorphousness. The morphology of the activated carbon was of spherical shape with a particle size of ~40-90 nm. Raman studies revealed the characteristic peaks of carbon present in the prepared activated carbon. The electrochemical studies evaluated for the fabricated coin cell with the activated carbon anode showed that the cell delivered a discharge capacity of ~321 mAhg-1 at a current density of 100 mAg-1 for the first cycle, and maintained a capacity of ~253 mAhg-1 for 400 cycles. The capacity retention was found to be higher (~81%) with 92.3% coulombic efficiency even after 400 cycles, which showed excellent cyclic reversibility and stability compared to commercial activated carbon. These results allow the waste biomass-derived anode to overcome the problem of cyclic stability and capacity performance. This study provides an insight for the fabrication of anodes from the rice husk which can be redirected into creating valuable renewable energy storage devices in the future, and the product could be a socially and ethically acceptable product.

3.
Int J Biol Macromol ; 222(Pt A): 462-472, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155784

RESUMO

Globally, people suffering from bone disorders are steadily increasing and bone tissue engineering is an advanced approach to treating fractured and defected bone tissues. In this study, we have prepared polymeric nanocomposite by free-radical polymerization from sodium alginate, hydroxyapatite, and silica with different GO amounts. The porous scaffolds were fabricated using the freeze drying technique. The structural, morphological, mechanical, and wetting investigation was conducted by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, universal tensile machine, and water contact angle characterization techniques. The swelling, biodegradation, and water retention were also studied. The biological studies were performed (cell viability, cell adherence, proliferation, and mineralization) against osteoblast cell lines. Scaffolds have exhibited different pore morphology SAG-1 (pore size = 414.61 ± 56 µm and porosity = 81.45 ± 2.17 %) and SAG-4 (pore size = 195.97 ± 82 µm and porosity = 53.82 ± 2.45 %). They have different mechanical behavior as SAG-1 has the least compression strength and compression modulus 2.14 ± 2.35 and 16.51 ± 1.27 MPa. However, SAG-4 has maximum compression strength and compression modulus 13.67 ± 2.63 and 96.16 ± 1.97 MPa with wetting behavior 80.70° and 58.70°, respectively. Similarly, SAG-1 exhibited the least and SAG-4 presented maximum apatite mineral formation, cell adherence, cell viability, and cell proliferation against mouse pre-osteoblast cell lines. The increased GO amount provides different multifunctional materials with different characteristics. Hence, the fabricated scaffolds could be potential scaffold materials to treat and regenerate fracture bone tissues in bone tissue engineering.


Assuntos
Dióxido de Silício , Engenharia Tecidual , Camundongos , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Alginatos , Osso e Ossos , Durapatita/farmacologia , Durapatita/química , Porosidade , Água , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
4.
Polymers (Basel) ; 13(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771258

RESUMO

The treatment of successive skin wounds necessitates meticulous medical procedures. In the care and treatment of skin wounds, hydrogels produced from natural polymers with controlled drug release play a crucial role. Arabinoxylan is a well-known and widely available biological macromolecule. We produced various formulations of blended composite hydrogels (BCHs) from arabinoxylan (ARX), carrageenan (CG), and reduced graphene oxide (rGO) using and cross-linked them with an optimal amount of tetraethyl orthosilicate (TEOS). The structural, morphological, and mechanical behavior of the BCHs samples were determined using Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), mechanical testing, and wetting, respectively. The swelling and degradation assays were performed in phosphate-buffered saline (PBS) solution and aqueous media. Maximum swelling was observed at pH 7 and the least swelling in basic pH regions. All composite hydrogels were found to be hemocompatible. In vitro, silver sulfadiazine release profile in PBS solution was analyzed via the Franz diffusion method, and maximum drug release (87.9%) was observed in 48 h. The drug release kinetics was studied against different mathematical models (zero-order, first-order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, and Baker-Lonsdale models) and compared their regression coefficient (R2) values. It was observed that drug release follows the Baker-Lonsdale model, as it has the highest value (0.989) of R2. Hence, the obtained results indicated that, due to optimized swelling, wetting, and degradation, the blended composite hydrogel BCH-3 could be an essential wound dressing biomaterial for sustained drug release for skin wound care and treatment.

5.
RSC Adv ; 10(50): 29975-29982, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35518211

RESUMO

A rapid microwave hydrothermal process is adopted for the synthesis of titanium dioxide and reduced graphene oxide nanocomposites as high-performance anode materials for Li-ion batteries. With the assistance of hydrazine hydrate as a reducing agent, graphene oxide was reduced while TiO2 nanoparticles were grown in situ on the nanosheets to obtain the nanocomposite material. The morphology of the nanocomposite obtained consisted of TiO2 particles with a size of ∼100 nm, uniformly distributed on the reduced graphene oxide nanosheets. The as-prepared TiO2-graphene nanocomposite was able to deliver a capacity of 250 mA h g-1 ± 5% at 0.2C for more than 200 cycles with remarkably stable cycle life during the Li+ insertion/extraction process. In terms of high rate capability performance, the nanocomposite delivered discharge capacity of ca. 100 mA h g-1 with >99% coulombic efficiency at C-rates of up to 20C. The enhanced electrochemical performance of the material in terms of high rate capability and cycling stability indicates that the as-developed TiO2-rGO nanocomposites are promising electrode materials for future Li-ion batteries.

6.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371370

RESUMO

Lithium sulfur batteries (LSBs) with high theoretical energy density are being pursued as highly promising next-generation large-scale energy storage devices. However, its launch into practical application is still shackled by various challenges. A rational nanostructure of hollow carbon nanoboxes filled with birnessite-type manganese oxide nanosheets (MnO2 @HCB) as a new class of molecularly-designed physical and chemical trap for lithium polysulfides (Li2 Sx (x = 4-8)) is reported. The bifunctional, integrated, hybrid nanoboxes overcome the obstacles of low sulfur loading, poor conductivity, and redox shuttle of LSBs via effective physical confinement and chemical interaction. Benefiting from the synergistic encapsulation, the developed MnO2 @HCB/S hybrid nanoboxes with 67.9 wt% sulfur content deliver high specific capacity of 1042 mAh g-1 at the current density of 1 A g-1 with excellent Coulombic efficiency ≈100%, and retain improved reversible capacity during long term cycling at higher current densities. The developed strategy paves a new path for employing other metal oxides with unique architectures to boost the performance of LSBs.

7.
ACS Appl Mater Interfaces ; 8(25): 15991-6001, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27250732

RESUMO

Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.

8.
Adv Mater ; 28(16): 3166, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27105813

RESUMO

S. Guo, Y. Hou, and S. Rehman develop a new class of silicon crosslinked with hierarchical porous carbon spheres usable as an efficient polysulfide reservoir for enhancing the performance of lithium-sulfur batteries. As described on page 3167, the developed hybrid material adsorbs negatively charged polysulfides via both chemical and physical adsorption. Remarkably, the hybrid spheres show a high specific capacity, an excellent rate capability and long cyclability.

9.
Adv Mater ; 28(16): 3167-72, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26895229

RESUMO

Integrated design of Si/SiO2 @hierar-chical porous carbon spheres is made and used as efficient polysulfide reservoir for enhancing lithium-sulfur battery (LSB) in terms of capacity, rate ability, and cycling stability via combined chemical and physical effects.

10.
Mater Sci Eng C Mater Biol Appl ; 58: 675-81, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26478359

RESUMO

In this work, hydroxyapatite (HA) nanorods were synthesized by simple one step wet precipitation method followed by their rapid surface functionalization via aminopropyltriethoxysilane (APTS) to give modified (HA-APTS) product. Functionalized hydroxyapatite (HA-APTS) holds amino groups on their surface that can be further functionalized with other bioactive molecules. The extent of functionalization of HA was studied under three different processing conditions; at room temperature, at 80 °C and under microwave condition (600 W). Three different temperatures have been use for the purpose of comparison between the functionalized products so that we can judge that whether there is any effect of temperature on the final products. In the last we conclude that temperature has no effect. So microwave condition is best to carried out the functionalization in just 5 min.


Assuntos
Durapatita/química , Nanotubos/química , Silanos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Micro-Ondas , Nanotecnologia , Nanotubos/toxicidade , Osteoblastos/efeitos dos fármacos , Propilaminas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA