Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Life (Basel) ; 12(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36556323

RESUMO

(1) Background: Cardiopulmonary resuscitation (CPR), as a form of basic life support, is critical for maintaining cardiac and cerebral perfusion during cardiac arrest, a medical condition with high expected mortality. Current guidelines emphasize the importance of rapid recognition and prompt initiation of high-quality CPR, including appropriate cardiac compression depth and rate. As space agencies plan missions to the Moon or even to explore Mars, the duration of missions will increase and with it the chance of life-threatening conditions requiring CPR. The objective of this review was to examine the effectiveness and feasibility of chest compressions as part of CPR following current terrestrial guidelines under hypogravity conditions such as those encountered on planetary or lunar surfaces; (2) Methods: A systematic literature search was conducted by two independent reviewers (PubMed, Cochrane Register of Controlled Trials, ResearchGate, National Aeronautics and Space Administration (NASA)). Only controlled trials conducting CPR following guidelines from 2010 and after with advised compression depths of 50 mm and above were included; (3) Results: Four different publications were identified. All studies examined CPR feasibility in 0.38 G simulating the gravitational force on Mars. Two studies also simulated hypogravity on the Moon with a force of 0.17 G/0,16 G. All CPR protocols consisted of chest compressions only without ventilation. A compression rate above 100/s could be maintained in all studies and hypogravity conditions. Two studies showed a significant reduction of compression depth in 0.38 G (-7.2 mm/-8.71 mm) and 0.17 G (-12.6 mm/-9.85 mm), respectively, with nearly similar heart rates, compared to 1 G conditions. In the other two studies, participants with higher body weight could maintain a nearly adequate mean depth while effort measured by heart rate (+23/+13.85 bpm) and VO2max (+5.4 mL·kg-1·min-1) increased significantly; (4) Conclusions: Adequate CPR quality in hypogravity can only be achieved under increased physical stress to compensate for functional weight loss. Without this extra effort, the depth of compression quickly falls below the guideline level, especially for light-weight rescuers. This means faster fatigue during resuscitation and the need for more frequent changes of the resuscitator than advised in terrestrial guidelines. Alternative techniques in the straddling position should be further investigated in hypogravity.

2.
Scand J Trauma Resusc Emerg Med ; 28(1): 108, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138865

RESUMO

BACKGROUND: With the "Artemis"-mission mankind will return to the Moon by 2024. Prolonged periods in space will not only present physical and psychological challenges to the astronauts, but also pose risks concerning the medical treatment capabilities of the crew. So far, no guideline exists for the treatment of severe medical emergencies in microgravity. We, as a international group of researchers related to the field of aerospace medicine and critical care, took on the challenge and developed a an evidence-based guideline for the arguably most severe medical emergency - cardiac arrest. METHODS: After the creation of said international group, PICO questions regarding the topic cardiopulmonary resuscitation in microgravity were developed to guide the systematic literature research. Afterwards a precise search strategy was compiled which was then applied to "MEDLINE". Four thousand one hundred sixty-five findings were retrieved and consecutively screened by at least 2 reviewers. This led to 88 original publications that were acquired in full-text version and then critically appraised using the GRADE methodology. Those studies formed to basis for the guideline recommendations that were designed by at least 2 experts on the given field. Afterwards those recommendations were subject to a consensus finding process according to the DELPHI-methodology. RESULTS: We recommend a differentiated approach to CPR in microgravity with a division into basic life support (BLS) and advanced life support (ALS) similar to the Earth-based guidelines. In immediate BLS, the chest compression method of choice is the Evetts-Russomano method (ER), whereas in an ALS scenario, with the patient being restrained on the Crew Medical Restraint System, the handstand method (HS) should be applied. Airway management should only be performed if at least two rescuers are present and the patient has been restrained. A supraglottic airway device should be used for airway management where crew members untrained in tracheal intubation (TI) are involved. DISCUSSION: CPR in microgravity is feasible and should be applied according to the Earth-based guidelines of the AHA/ERC in relation to fundamental statements, like urgent recognition and action, focus on high-quality chest compressions, compression depth and compression-ventilation ratio. However, the special circumstances presented by microgravity and spaceflight must be considered concerning central points such as rescuer position and methods for the performance of chest compressions, airway management and defibrillation.


Assuntos
Medicina Aeroespacial/métodos , Reanimação Cardiopulmonar/métodos , Consenso , Cuidados Críticos/métodos , Parada Cardíaca/terapia , Sociedades Médicas , Voo Espacial , Emergências , Europa (Continente) , Humanos
3.
Case Rep Crit Care ; 2020: 8896923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963836

RESUMO

We present this case of a young woman with SARS-CoV-2 viral infection resulting in coronavirus 2019 (COVID-19) lung disease complicated by a complex hydropneumothorax, recurrent pneumothorax, and pneumatoceles. A 33-year-old woman presented to the hospital with a one-week history of cough, shortness of breath, and myalgia, with no other significant past medical history. She tested positive for COVID-19 and subsequently, her respiratory function rapidly deteriorated, necessitating endotracheal intubation and mechanical ventilation. She had severe hypoxic respiratory failure requiring a protracted period on the mechanical ventilator with different ventilation strategies and multiple cycles of prone positioning. During her proning, after two weeks on the intensive care unit, she developed tension pneumothorax that required bilateral intercostal chest drains (ICD) to stabilise her. After 24 days, she had a percutaneous tracheostomy and began her respiratory wean; however, this was limited due to the ongoing infection. Thorax CT demonstrated a left-sided pneumothorax, with bilateral pneumatoceles and a sizeable, complex hydropneumothorax. Despite the insertion of ICDs, the hydropneumothorax persisted over months and initially progressed in size on serial scans needing multiple ICDs. She was too ill for surgical interventions initially, opting for conservative management. After 60 days, she successfully underwent a video-assisted thoracoscopic surgery (VATS) for a washout and placement of further ICDs. She was successfully decannulated after 109 days on the intensive care unit and was discharged to a rehabilitation unit after 116 days of being an inpatient, with her last thorax CT showing some residual pneumatoceles but significant improvement. Late changes may mean patients recovering from the COVID-19 infection are at increased risk of pneumothoracies. Clinicians need to be alert to this, especially as bullous rupture may not present as a classical pneumothorax.

5.
Life Sci Space Res (Amst) ; 18: 72-79, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30100150

RESUMO

INTRODUCTION: 2015 UK resuscitation guidelines aim for 50-60 mm depth when giving external chest compressions (ECCs). This is achievable in hypogravity if the rescuer flexes and extends their arms during CPR, or using a new method trialed; the 'Mackaill-Russomano' (MR CPR) method. METHODS: 10 participants performed 3 sets of 30 ECCs in accordance with 2015 guidelines. A control was used at 1Gz, with eight further conditions using Mars and Moon simulations, with and without braces in the terrestrial position and using the MR CPR method. The MR CPR method involved straddling the mannequin, using its legs for stabilization. A body suspension device, with counterweights, simulated hypogravity environments. ECC depth, rate, angle of arm flexion and heart rate (HR) were measured. RESULTS: Participants completed all conditions, and ECC rate was achieved throughout. Mean (±â€¯SD) ECC depth using the MR CPR method at 0.38Gz was 54.1 ±â€¯0.55 mm with braces; 50.5 ±â€¯1.7 mm without. ECCs were below 50 mm at 0.17Gz using the MR CPR method (47.5 ±â€¯1.47 mm with braces; 47.4 ±â€¯0.87 mm without). In the terrestrial position, ECCs were more effective without braces (49.4 ±â€¯0.26 mm at 0.38Gz; 43.9 ±â€¯0.87 mm at 0.17Gz) than with braces (48.5 ±â€¯0.28 mm at 0.38Gz; 42.4 ±â€¯0.3 mm at 0.17Gz). Flexion increased from approximately 2° - 8° with and without braces respectively. HR did not change significantly from control. DISCUSSION: 2015 guidelines were achieved using the MR CPR method at 0.38Gz, with no significant difference with and without braces. Participants were closer to achieving the required ECC depth in the terrestrial position without braces. ECC depth was not achieved at 0.17Gz, due to a greater reduction in effective body weight.


Assuntos
Medicina Aeroespacial , Reanimação Cardiopulmonar/métodos , Massagem Cardíaca/métodos , Hipogravidade , Simulação de Ausência de Peso , Adulto , Feminino , Frequência Cardíaca , Humanos , Masculino , Pressão , Voo Espacial , Adulto Jovem
6.
BMJ Case Rep ; 20162016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030462

RESUMO

A 49-year-old man presented to the accident and emergency department, with a short history of vague abdominal pain, abdominal distension and two episodes of frank haematuria. A plain chest film showed dilated loops of large bowel and blood results on admission showed an acute kidney injury (stage 3). A diagnosis of bowel obstruction was made initially but a CT scan of the abdomen showed bilateral obstructing calculi. After initial resuscitation, the patient had bilateral ultrasound-guided nephrostomies and haemofiltration. He later underwent bilateral antegrade ureteric stenting. A decision will later be made on whether or not he is fit enough to undergo ureteroscopy and laser stone fragmentation.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Cálculos Ureterais/diagnóstico por imagem , Injúria Renal Aguda/complicações , Diagnóstico Diferencial , Gerenciamento Clínico , Humanos , Masculino , Pessoa de Meia-Idade , Cálculos Ureterais/etiologia
7.
Aviat Space Environ Med ; 85(7): 687-93, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25022155

RESUMO

INTRODUCTION: Cardiopulmonary resuscitation (CPR) in microgravity is challenging. There are three single-person CPR techniques that can be performed in microgravity: the Evetts-Russomano (ER), Handstand (HS), and Reverse Bear Hug (RBH). All three methods have been evaluated in parabolic flights, but only the ER method has been shown to be effective in prolonged microgravity simulation. All three methods of CPR have yet to be evaluated using the current 2010 guidelines. METHODS: There were 23 male subjects who were recruited to perform simulated terrestrial CPR (+1 G(z)) and the three microgravity CPR methods for four sets of external chest compressions (ECC). To simulate microgravity, the subjects used a body suspension device (BSD) and trolley system. True depth (D(T)), ECC rate, and oxygen consumption (Vo2) were measured. RESULTS: The mean (+/- SD) D(T) for the ER (37.4 +/- 1.5 mm) and RBH methods (23.9 +/- 1.4 mm) were significantly lower than +1 G(z) CPR. However, both methods attained an ECC rate that met the guidelines (105.6 +/- 0.8; 101.3 +/- 1.5 compressions/min). The HS method achieved a superior D(T) (49.3 +/- 1.2 mm), but a poor ECC rate (91.9 +/- 2.2 compressions/min). Vo2 for ER and HS was higher than +1 Gz; however, the RBH was not. CONCLUSION: All three methods have merit in performing ECC in simulated microgravity; the ER and RBH have adequate ECC rates, and the HS method has adequate D(T). However, all methods failed to meet all criteria for the 2010 guidelines. Further research to evaluate the most effective method of CPR in microgravity is needed.


Assuntos
Reanimação Cardiopulmonar/métodos , Simulação de Ausência de Peso , Adolescente , Adulto , Medicina Aeroespacial , Análise de Variância , Frequência Cardíaca/fisiologia , Humanos , Masculino , Manequins , Consumo de Oxigênio/fisiologia , Ventilação Pulmonar/fisiologia , Adulto Jovem
8.
Life Sci Space Res (Amst) ; 1: 60-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26432590

RESUMO

BACKGROUND: This original study evaluated the electromyograph (EMG) activity of four upper body muscles: triceps brachii, erector spinae, upper rectus abdominis, and pectoralis major, while external chest compressions (ECCs) were performed in simulated Martian hypogravity using a Body Suspension Device, counterweight system, and standard full body cardiopulmonary resuscitation (CPR) mannequin. METHOD: 20 young, healthy male subjects were recruited. One hundred compressions divided into four sets, with roughly six seconds between each set to indicate 'ventilation', were performed within approximately a 1.5 minute protocol. Chest compression rate, depth and number were measured along with the subject's heart rate (HR) and rating of perceived exertion (RPE). RESULTS: All mean values were used in two-tailed t-tests using SPSS to compare +1 Gz values (control) versus simulated hypogravity values. The AHA (2005) compression standards were maintained in hypogravity. RPE and HR increased by 32% (p<0.001) and 44% (p=0.002), respectively, when ECCs were performed during Mars simulation, in comparison to +1 Gz. In hypogravity, the triceps brachii showed significantly less activity (p<0.001) when compared with the other three muscles studied. The comparison of all the other muscles showed no difference at +1 Gz or in hypogravity. CONCLUSIONS: This study was among the first of its kind, however several limitations were faced which hopefully will not exist in future studies. Evaluation of a great number of muscles will allow space crews to focus on specific strengthening exercises within their current training regimes in case of a serious cardiac event in hypogravity.

9.
Extrem Physiol Med ; 2(1): 11, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23849595

RESUMO

BACKGROUND: Current 2010 terrestrial (1Gz) CPR guidelines have been advocated by space agencies for hypogravity and microgravity environments, but may not be feasible. The aims of this study were to (1) evaluate rescuer performance over 1.5 min of external chest compressions (ECCs) during simulated Martian hypogravity (0.38Gz) and microgravity (µG) in relation to 1Gz and rest baseline and (2) compare the physiological costs of conducting ECCs in accordance with the 2010 and 2005 CPR guidelines. METHODS: Thirty healthy male volunteers, ranging from 17 to 30 years, performed four sets of 30 ECCs for 1.5 min using the 2010 and 2005 ECC guidelines during 1Gz, 0.38Gz and µG simulations (Evetts-Russomano (ER) method), achieved by the use of a body suspension device. ECC depth and rate, range of elbow flexion, post-ECC heart rate (HR), minute ventilation (VE), peak oxygen consumption (VO2peak) and rate of perceived exertion (RPE) were measured. RESULTS: All volunteers completed the study. Mean ECC rate was achieved for all gravitational conditions, but true depth during simulated microgravity was not sufficient for the 2005 (28.5 ± 7.0 mm) and 2010 (32.9 ± 8.7 mm) guidelines, even with a mean range of elbow flexion of 15°. HR, VE and VO2peak increased to an average of 136 ± 22 bpm, 37.5 ± 10.3 L·min-1, 20.5 ± 7.6 mL·kg-1·min-1 for 0.38Gz and 161 ± 19 bpm, 58.1 ± 15.0 L·min-1, 24.1 ± 5.6 mL·kg-1·min-1 for µG from a baseline of 84 ± 15 bpm, 11.4 ± 5.9 L·min-1, 3.2 ± 1.1 mL·kg-1·min-1, respectively. RPE was the only variable to increase with the 2010 guidelines. CONCLUSION: No additional physiological cost using the 2010 basic life support (BLS) guidelines was needed for healthy males performing ECCs for 1.5 min, independent of gravitational environment. This cost, however, increased for each condition tested when the two guidelines were compared. Effective ECCs were not achievable for both guidelines in simulated µG using the ER BLS method. This suggests that future implementation of an ER BLS in a simulated µG instruction programme as well as upper arm strength training is required to perform effective BLS in space.

10.
Aviat Space Environ Med ; 82(2): 104-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21329024

RESUMO

BACKGROUND: If a cardiac arrest occurs in microgravity, current emergency protocols aim to treat patients via a medical restraint system within 2-4 min. It is vital that crewmembers have the ability to perform single-person cardiopulmonary resuscitation (CPR) during this period, allowing time for advanced life support to be deployed. The efficacy of the Evetts-Russomano (ER) method has been tested in 22 s of microgravity in a parabolic flight and has shown that external chest compressions (ECC) and mouth-to-mouth ventilation are possible. METHODS: There were 21 male subjects who performed both the ER method in simulated microgravity via full body suspension and at +1 Gz. The CPR mannequin was modified to provide accurate readings for ECC depth and a metronome to set the rate at 100 bpm. Heart rate, rate of perceived exertion, and angle of arm flexion were measured with an ECG, elbow electrogoniometers, and Borg scale, respectively. RESULTS: The mean (+/- SD) depth of ECC in simulated microgravity was lower in each of the 3 min compared to +1 G2. The ECC depth (45.7 +/- 2.7 mm, 42.3 +/- 5.5 mm, and 41.4 +/- 5.9 mm) and rate (104.5 +/- 5.2, 105.2 +/- 4.5, and 102.4 +/- 6.6 compressions/min), however, remained within CPR guidelines during simulated microgravity over the 3-min period. Heart rate, perceived exertion, and elbow flexion of both arms increased using the ER method. CONCLUSION: The ER method can provide adequate depth and rate of ECC in simulated microgravity for 3 min to allow time to deploy a medical restraint system. There is, however, a physiological cost associated with it and a need to use the flexion of the arms to compensate for the lack of weight.


Assuntos
Medicina Aeroespacial/métodos , Reanimação Cardiopulmonar/métodos , Auxiliares de Emergência , Parada Cardíaca/terapia , Ausência de Peso , Suporte Vital Cardíaco Avançado/métodos , Braço/fisiologia , Eletrocardiografia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Esforço Físico/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...