Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348827

RESUMO

Assessment of respiratory function allows early detection of potential disorders in the respiratory system and provides useful information for medical management. There is a wide range of applications for breathing assessment, from measurement systems in a clinical environment to applications involving athletes. Many studies on pulmonary function testing systems and breath monitoring have been conducted over the past few decades, and their results have the potential to broadly impact clinical practice. However, most of these works require physical contact with the patient to produce accurate and reliable measures of the respiratory function. There is still a significant shortcoming of non-contact measuring systems in their ability to fit into the clinical environment. The purpose of this paper is to provide a review of the current advances and systems in respiratory function assessment, particularly camera-based systems. A classification of the applicable research works is presented according to their techniques and recorded/quantified respiration parameters. In addition, the current solutions are discussed with regards to their direct applicability in different settings, such as clinical or home settings, highlighting their specific strengths and limitations in the different environments.


Assuntos
Monitorização Fisiológica/instrumentação , Respiração , Humanos
2.
Comput Med Imaging Graph ; 70: 17-28, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273831

RESUMO

Assessment of respiratory activity in pediatric intensive care unit allows a comprehensive view of the patient's condition. This allows the identification of high-risk cases for prompt and appropriate medical treatment. Numerous research works on respiration monitoring have been conducted in recent years. However, most of them are unsuitable for clinical environment or require physical contact with the patient, which limits their efficiency. In this paper, we present a novel system for measuring the breathing pattern based on a computer vision method and contactless design. Our 3D imaging system is specifically designed for pediatric intensive care environment, which distinguishes it from the other imaging methods. Indeed, previous works are mostly limited to the use of conventional video acquisition devices, in addition to not considering the constraints imposed by intensive care environment. The proposed system uses depth information captured by two (Red Green Blue-Depth) RGB-D cameras at different view angles, by considering the intensive care unit constraints. Depth information is then exploited to reconstruct a 3D surface of a patient's torso with high temporal and spatial resolution and large spatial coverage. Our system captures the motion information for the top of the torso surface as well as for its both lateral sides. For each reconstruction, the volume is estimated through a recursive subdivision of the 3D space into cubic unit elements. The volume change is then calculated through a subtraction technique between successive reconstructions. We tested our system in the pediatric intensive care unit of the Sainte-Justine university hospital center, where it was compared to the gold standard method currently used in pediatric intensive care units. The performed experiments showed a very high accuracy and precision of the proposed imaging system in estimating respiratory rate and tidal volume.


Assuntos
Imageamento Tridimensional/métodos , Unidades de Terapia Intensiva Pediátrica , Monitorização Fisiológica/métodos , Respiração , Algoritmos , Humanos , Volume de Ventilação Pulmonar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...