Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20232522, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444337

RESUMO

Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.


Assuntos
Ecossistema , Praguicidas , Mudança Climática , Incerteza
2.
Sci Data ; 9(1): 755, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477373

RESUMO

Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.

3.
Nat Ecol Evol ; 2(7): 1104-1111, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807995

RESUMO

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.


Assuntos
Fabaceae/crescimento & desenvolvimento , Florestas , Chuva , Árvores/crescimento & desenvolvimento , América Central , Densidade Demográfica , Porto Rico , América do Sul
4.
Ecol Lett ; 19(9): 1071-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27346439

RESUMO

Multiple niche-based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density-dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first-year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density-dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow-growing and well-defended species. Niche differentiation along the growth-survival trade-off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed-size variation and promote species coexistence through a tolerance-fecundity trade-off.


Assuntos
Biodiversidade , Floresta Úmida , Sementes/fisiologia , Árvores/fisiologia , Modelos Biológicos , Panamá , Dinâmica Populacional , Especificidade da Espécie , Árvores/crescimento & desenvolvimento , Clima Tropical
5.
Nature ; 529(7585): 167-71, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26700811

RESUMO

Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.


Assuntos
Fenótipo , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Biodiversidade , Bases de Dados Factuais , Variação Genética , Internacionalidade , Modelos Biológicos , Nitrogênio/análise , Tamanho do Órgão , Desenvolvimento Vegetal , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Plantas/classificação , Reprodução , Sementes/anatomia & histologia , Seleção Genética , Especificidade da Espécie
6.
Ecol Lett ; 16(8): 1069-78, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23800188

RESUMO

Several theories predict whole-tree function on the basis of allometric scaling relationships assumed to emerge from traits of branching networks. To test this key assumption, and more generally, to explore patterns of external architecture within and across trees, we measure branch traits (radii/lengths) and calculate scaling exponents from five functionally divergent species. Consistent with leading theories, including metabolic scaling theory, branching is area preserving and statistically self-similar within trees. However, differences among scaling exponents calculated at node- and whole-tree levels challenge the assumption of an optimised, symmetrically branching tree. Furthermore, scaling exponents estimated for branch length change across branching orders, and exponents for scaling metabolic rate with plant size (or number of terminal tips) significantly differ from theoretical predictions. These findings, along with variability in the scaling of branch radii being less than for branch lengths, suggest extending current scaling theories to include asymmetrical branching and differential selective pressures in plant architectures.


Assuntos
Árvores/crescimento & desenvolvimento , Costa Rica , Modelos Biológicos , Sudoeste dos Estados Unidos
7.
Ecology ; 91(12): 3664-74, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21302837

RESUMO

A trade-off between growth and mortality rates characterizes tree species in closed canopy forests. This trade-off is maintained by inherent differences among species and spatial variation in light availability caused by canopy-opening disturbances. We evaluated conditions under which the trade-off is expressed and relationships with four key functional traits for 103 tree species from Barro Colorado Island, Panama. The trade-off is strongest for saplings for growth rates of the fastest growing individuals and mortality rates of the slowest growing individuals (r2 = 0.69), intermediate for saplings for average growth rates and overall mortality rates (r2 = 0.46), and much weaker for large trees (r2 < or = 0.10). This parallels likely levels of spatial variation in light availability, which is greatest for fast- vs. slow-growing saplings and least for large trees with foliage in the forest canopy. Inherent attributes of species contributing to the trade-off include abilities to disperse, acquire resources, grow rapidly, and tolerate shade and other stresses. There is growing interest in the possibility that functional traits might provide insight into such ecological differences and a growing consensus that seed mass (SM), leaf mass per area (LMA), wood density (WD), and maximum height (H(max)) are key traits among forest trees. Seed mass, LMA, WD, and H(max) are predicted to be small for light-demanding species with rapid growth and mortality and large for shade-tolerant species with slow growth and mortality. Six of these trait-demographic rate predictions were realized for saplings; however, with the exception of WD, the relationships were weak (r2 < 0.1 for three and r2 < 0.2 for five of the six remaining relationships). The four traits together explained 43-44% of interspecific variation in species positions on the growth-mortality trade-off; however, WD alone accounted for > 80% of the explained variation and, after WD was included, LMA and H(max) made insignificant contributions. Virtually the full range of values of SM, LMA, and H(max) occurred at all positions on the growth-mortality trade-off. Although WD provides a promising start, a successful trait-based ecology of tropical forest trees will require consideration of additional traits.


Assuntos
Ecossistema , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Clima Tropical , Biomassa , Folhas de Planta/fisiologia , Sementes/fisiologia
8.
New Phytol ; 160(2): 329-336, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33832183

RESUMO

• Here we explore the possible role of leaf-level gas exchange traits in determining growth rate differences and competitive interactions between evergreen angiosperms and conifers. • We compared relationships among photosynthetic capacity (Amax ), maximum stomatal conductance (Gs ), leaf life span, nitrogen concentration (N) and specific leaf area (SLA), in sun leaves of 23 evergreen angiosperm and 20 conifer populations. • Despite similar average leaf Nmass , conifer leaves lived longer on average (36 months) than angiosperms (25 months). At a standardized leaf N, Amass was higher in angiosperms (56 nmol g-1 s-1 ) than in conifers (36 nmol g-1 s-1 ). Stepwize regression suggested that most of this difference in photosynthetic nitrogen use efficiency could be explained by Gs and SLA. Mean Gs (on an area basis) of angiosperms was higher than that of conifers (152 vs 117 mmol m2 s-1 ), but Aarea -Gs relationships were similar for the two groups. At a given leaf N, conifers had lower SLA (projected area basis) than angiosperms. • Photosynthetic differences probably contribute to the competitive advantage of angiosperm trees over conifers in productive habitats, and may be linked to the greater hydraulic capacity of vessels, enabling angiosperms to develop higher stomatal conductance and therefore sustain higher transpiration rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA