Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166211, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273530

RESUMO

Sex differences in physiology are noted in clinical and animal studies. However, mechanisms underlying these observed differences between males and females remain elusive. Nuclear receptors control a wide range of physiological pathways and are expressed in the gastrointestinal tract, including the mouth, stomach, liver and intestine. We investigated the literature pertaining to ER, AR, FXR, and PPAR regulation and highlight the sex differences in nutrient metabolism along the digestive system. We chose these nuclear receptors based on their metabolic functions, and hormonal actions. Intriguingly, we noted an overlap in target genes of ER and FXR that modulate mucosal integrity and GLP-1 secretion, whereas overlap in target genes of PPARα with ER and AR modulate lipid metabolism. Sex differences were seen not only in the basal expression of nuclear receptors, but also in activation as their endogenous ligand concentrations fluctuate depending on nutrient availability. Finally, in this review, we speculate that interactions between the nuclear receptors may influence overall metabolic decisions in the gastrointestinal tract in a sex-specific manner.


Assuntos
Digestão/fisiologia , Gastroenteropatias/epidemiologia , Trato Gastrointestinal/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Feminino , Gastroenteropatias/etiologia , Gastroenteropatias/fisiopatologia , Disparidades nos Níveis de Saúde , Humanos , Incidência , Masculino , Fatores Sexuais , Transdução de Sinais/fisiologia
2.
Hepatology ; 69(6): 2455-2470, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715741

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a protein that is required for the development and survival of enteric, sympathetic, and catecholaminergic neurons. We previously reported that GDNF is protective against high fat diet (HFD)-induced hepatic steatosis in mice through suppression of hepatic expression of peroxisome proliferator activated receptor-γ and genes encoding enzymes involved in de novo lipogenesis. We also reported that transgenic overexpression of GDNF in mice prevented the HFD-induced liver accumulation of the autophagy cargo-associated protein p62/sequestosome 1 characteristic of impaired autophagy. Here we investigated the effects of GDNF on hepatic autophagy in response to increased fat load, and on hepatocyte mitochondrial fatty acid ß-oxidation and cell survival. GDNF not only prevented the reductions in the liver levels of some key autophagy-related proteins, including Atg5, Atg7, Beclin-1 and LC3A/B-II, seen in HFD-fed control mice, but enhanced their levels after 12 weeks of HFD feeding. In vitro, GDNF accelerated autophagic cargo clearance in primary mouse hepatocytes and a rat hepatocyte cell line, and reduced the phosphorylation of the mechanistic target of rapamycin complex downstream-target p70S6 kinase similar to the autophagy activator rapamycin. GDNF also enhanced mitochondrial fatty acid ß-oxidation in primary mouse and rat hepatocytes, and protected against palmitate-induced lipotoxicity. Conclusion: We demonstrate a role for GDNF in enhancing hepatic autophagy and in potentiating mitochondrial function and fatty acid oxidation. Our studies show that GDNF and its receptor agonists could be useful for enhancing hepatocyte survival and protecting against fatty acid-induced hepatic lipotoxicity.


Assuntos
Autofagia/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Hepatócitos/metabolismo , Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Palmitatos/metabolismo , Animais , Morte Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Células Hep G2/citologia , Células Hep G2/metabolismo , Hepatócitos/citologia , Humanos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Consumo de Oxigênio/fisiologia , Distribuição Aleatória , Ratos , Sensibilidade e Especificidade , Transdução de Sinais , Sirolimo/farmacologia
3.
J Physiol ; 595(5): 1831-1846, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28000223

RESUMO

KEY POINTS: A high-fat diet (60% kcal from fat) is associated with motility disorders inducing constipation and loss of nitrergic myenteric neurons in the proximal colon. Gut microbiota dysbiosis, which occurs in response to HFD, contributes to endotoxaemia. High levels of lipopolysaccharide lead to apoptosis in cultured myenteric neurons that express Toll-like receptor 4 (TLR4). Consumption of a Western diet (WD) (35% kcal from fat) for 6 weeks leads to gut microbiota dysbiosis associated with altered bacterial metabolites and increased levels of plasma free fatty acids. These disorders precede the nitrergic myenteric cell loss observed in the proximal colon. Mice lacking TLR4 did not exhibit WD-induced myenteric cell loss and dysmotility. Lipopolysaccharide-induced in vitro enteric neurodegeneration requires the presence of palmitate and may be a result of enhanced NO production. The present study highlights the critical role of plasma saturated free fatty acids that are abundant in the WD with respect to driving enteric neuropathy and colonic dysmotility. ABSTRACT: The consumption of a high-fat diet (HFD) is associated with myenteric neurodegeneration, which in turn is associated with delayed colonic transit and constipation. We examined the hypothesis that an inherent increase in plasma free fatty acids (FFA) in the HFD together with an HFD-induced alteration in gut microbiota contributes to the pathophysiology of these disorders. C57BL/6 mice were fed a Western diet (WD) (35% kcal from fat enriched in palmitate) or a purified regular diet (16.9% kcal from fat) for 3, 6, 9 and 12 weeks. Gut microbiota dysbiosis was investigated by fecal lipopolysaccharide (LPS) measurement and metabolomics (linear trap quadrupole-Fourier transform mass spectrometer) analysis. Plasma FFA and LPS levels were assessed, in addition to colonic and ileal nitrergic myenteric neuron quantifications and motility. Compared to regular diet-fed control mice, WD-fed mice gained significantly more weight without blood glucose alteration. Dysbiosis was exhibited after 6 weeks of feeding, as reflected by increased fecal LPS and bacterial metabolites and concomitant higher plasma FFA. The numbers of nitrergic myenteric neurons were reduced in the proximal colon after 9 and 12 weeks of WD and this was also associated with delayed colonic transit. WD-fed Toll-like receptor 4 (TLR4)-/- mice did not exhibit myenteric cell loss or dysmotility. Finally, LPS (0.5-2 ng·ml-1 ) and palmitate (20 and 30 µm) acted synergistically to induce neuronal cell death in vitro, which was prevented by the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. In conclusion, WD-feeding results in increased levels of FFA and microbiota that, even in absence of hyperglycaemia or overt endotoxaemia, synergistically induce TLR4-mediated neurodegeneration and dysmotility.


Assuntos
Colo/fisiologia , Dieta Ocidental , Receptor 4 Toll-Like/fisiologia , Tecido Adiposo/metabolismo , Animais , Colo/metabolismo , Colo/microbiologia , Citocinas/metabolismo , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Fezes/química , Feminino , Flagelina/metabolismo , Microbioma Gastrointestinal , Células HEK293 , Humanos , Lipocalina-2/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 2(3): 328-339, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27446985

RESUMO

BACKGROUND & AIMS: High-fat diet (HFD) feeding is associated with gastrointestinal motility disorders. We recently reported delayed colonic motility in mice fed a HFD mice for 11 weeks. In this study, we investigated the contributing role of gut microbiota in HFD-induced gut dysmotility. METHODS: Male C57BL/6 mice were fed a HFD (60% kcal fat) or a regular/control diet (RD) (18% kcal fat) for 13 weeks. Serum and fecal endotoxin levels were measured, and relative amounts of specific gut bacteria in the feces assessed by real time PCR. Intestinal transit was measured by fluorescent-labeled marker and bead expulsion test. Enteric neurons were assessed by immunostaining. Oligofructose (OFS) supplementation with RD or HFD for 5 weeks was also studied. In vitro studies were performed using primary enteric neurons and an enteric neuronal cell line. RESULTS: HFD-fed mice had reduced numbers of enteric nitrergic neurons and exhibited delayed gastrointestinal transit compared to RD-fed mice. HFD-fed mice had higher fecal Firmicutes and Escherichia coli and lower Bacteroidetes compared to RD-fed mice. OFS supplementation protected against enteric nitrergic neurons loss in HFD-fed mice, and improved intestinal transit time. OFS supplementation resulted in a reductions in fecal Firmicutes and Escherichia coli and serum endotoxin levels. In vitro, palmitate activation of TLR4 induced enteric neuronal apoptosis in a p-JNK1 dependent pathway. This apoptosis was prevented by a JNK inhibitor and in neurons from TLR4-/- mice. CONCLUSIONS: Together our data suggest that intestinal dysbiosis in HFD fed mice contribute to the delayed intestinal motility by inducing a TLR4-dependant neuronal loss. Manipulation of gut microbiota with OFS improved intestinal motility in HFD mice.

5.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1091-101, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033119

RESUMO

Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS). Moreover, many studies suggest that a dysbiosis of periodontal microbiota could be associated with the incidence of metabolic and cardiac diseases. We investigated whether periodontitis together with the periodontal microbiota may also be associated with these different cardiometabolic phenotypes. We report that the severity of glucose intolerance is related to the severity of periodontitis and cardiac disorders. In detail, alveolar bone loss was more accentuated in DS than Inter, DR, and normal chow-fed mice. Molecular markers of periodontal inflammation, such as TNF-α and plasminogen activator inhibitor-1 mRNA levels, correlated positively with both alveolar bone loss and glycemic index. Furthermore, the periodontal microbiota of DR mice was dominated by the Streptococcaceae family of the phylum Firmicutes, whereas the periodontal microbiota of DS mice was characterized by increased Porphyromonadaceae and Prevotellaceae families. Moreover, in DS mice the periodontal microbiota was indicated by an abundance of the genera Prevotella and Tannerella, which are major periodontal pathogens. PICRUSt analysis of the periodontal microbiome highlighted that prenyltransferase pathways follow the cardiometabolic adaptation to a high-fat diet. Finally, DS mice displayed a worse cardiac phenotype, percentage of fractional shortening, heart rhythm, and left ventricle weight-to-tibia length ratio than Inter and DR mice. Together, our data show that periodontitis combined with particular periodontal microbiota and microbiome is associated with metabolic adaptation to a high-fat diet related to the severity of cardiometabolic alteration.


Assuntos
Adaptação Fisiológica , Doenças Cardiovasculares/metabolismo , Dieta Hiperlipídica , Intolerância à Glucose , Microbiota , Periodontite/microbiologia , Função Ventricular , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/microbiologia , Dimetilaliltranstransferase/metabolismo , Disbiose/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/complicações , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Prevotella/isolamento & purificação , Streptococcaceae/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo
6.
J Physiol ; 591(20): 5125-39, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23940384

RESUMO

Colonic transit and mucosal integrity are believed to be impaired in obesity. However, a comprehensive assessment of altered colonic functions, inflammatory changes and neuronal signalling of obese animals is missing. In mice, we studied the impact of diet-induced obesity (DIO) on: (i) in vivo colonic transit; (ii) signalling in the myenteric plexus by recording responses to nicotine and 2-methyl-5-hydroxytryptamine (2-methyl-5-HT), together with the expression of tryptophan hydroxylase (TPH) 1 and 2, serotonin reuptake transporter, choline acetyltransferase and the paired box gene 4; and (iii) expression of proinflammatory cytokines, epithelial permeability and density of macrophages, mast cells and enterochromaffin cells. Compared with controls, colon transit and neuronal sensitivity to nicotine and 2-methyl-5-HT were enhanced in DIO mice fed for 12 weeks. This was associated with increased tissue acetylcholine and 5-hydroxytryptamine (5-HT) content, and increased expression of TPH1 and TPH2. In DIO mice, upregulation of proinflammatory cytokines was found in fat tissue, but not in the gut wall. Accordingly, mucosal permeability or integrity was unaltered without signs of immune cell infiltration in the gut wall. Body weight showed positive correlations with adipocyte markers, tissue levels of 5-HT and acetylcholine, and the degree of neuronal sensitization. DIO mice fed for 4 weeks showed no neuronal sensitization, had no signs of gut wall inflammation and showed a smaller increase in leptin, interleukin-6 and monocyte chemoattractant protein 1 expression in fat tissue. DIO is associated with faster colonic transit and impacts on acetylcholine and 5-HT metabolism with enhanced responsiveness of enteric neurones to both mediators after 12 weeks of feeding. Our study demonstrates neuronal plasticity in DIO prior to the development of a pathological histology or abnormal mucosal functions. This questions the common assumption that increased mucosal inflammation and permeability initiate functional disorders in obesity.


Assuntos
Colo/metabolismo , Mucosa Intestinal/metabolismo , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Colo/citologia , Colo/inervação , Colo/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Carboidratos da Dieta/efeitos adversos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Plexo Mientérico/citologia , Plexo Mientérico/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Obesidade/induzido quimicamente , Obesidade/fisiopatologia , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Permeabilidade , Serotonina/análogos & derivados , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
7.
J Physiol ; 590(3): 533-44, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22124147

RESUMO

Nutritional factors can induce profound neuroplastic changes in the enteric nervous system (ENS), responsible for changes in gastrointestinal (GI) motility. However, long-term effects of a nutritional imbalance leading to obesity, such as Western diet (WD), upon ENS phenotype and control of GI motility remain unknown. Therefore, we investigated the effects of WD-induced obesity (DIO) on ENS phenotype and function as well as factors involved in functional plasticity. Mice were fed with normal diet (ND) or WD for 12 weeks. GI motility was assessed in vivo and ex vivo. Myenteric neurons and glia were analysed with immunohistochemical methods using antibodies against Hu, neuronal nitric oxide synthase (nNOS), Sox-10 and with calcium imaging techniques. Leptin and glial cell line-derived neurotrophic factor (GDNF) were studied using immunohistochemical, biochemical or PCR methods in mice and primary culture of ENS. DIO prevented the age-associated decrease in antral nitrergic neurons observed in ND mice. Nerve stimulation evoked a stronger neuronal Ca(2+) response in WD compared to ND mice. DIO induced an NO-dependent increase in gastric emptying and neuromuscular transmission in the antrum without any change in small intestinal transit. During WD but not ND, a time-dependent increase in leptin and GDNF occurred in the antrum. Finally, we showed that leptin increased GDNF production in the ENS and induced neuroprotective effects mediated in part by GDNF. These results demonstrate that DIO induces neuroplastic changes in the antrum leading to an NO-dependent acceleration of gastric emptying. In addition, DIO induced neuroplasticity in the ENS is likely to involve leptin and GDNF.


Assuntos
Dieta , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Leptina/fisiologia , Plexo Mientérico/fisiologia , Fármacos Neuroprotetores , Obesidade/fisiopatologia , Acetilcolina/fisiologia , Animais , Células Cultivadas , Esvaziamento Gástrico , Jejuno/inervação , Jejuno/fisiologia , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Antro Pilórico/inervação , Antro Pilórico/fisiologia , RNA Mensageiro/metabolismo , Ratos
8.
Fundam Clin Pharmacol ; 26(5): 577-88, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21913975

RESUMO

Clay consumption is a spontaneous behavior currently observed in animals and humans, particularly during undernutrition. Often regarded as intestinal care products, ingested clays also enhance food efficiency, notably by increasing intestinal lipid uptake. Clay complementation could then optimize the reconstitution of energy reserves in animals with low lipid stocks consecutive to intensive fasting. The aim of this study was therefore to observe the effects of voluntarily kaolinite complementation during the refeeding of fasted rats to determine whether body mass, food uptake, lipid and mineral contents as intestinal morphology and protein profile were modified. This study examined two types of refeeding experiments after prolonged fasting. Firstly, rats with ad libitum access to food were compared to rats with ad libitum access to food and kaolinite pellets. Animals were randomly put into the different groups when the third phase of fasting (phase III) reached by each individual was detected. In a second set of experiments, rats starting phase III were refed with free access to food and kaolinite pellets. When animals had regained their body mass prior to fasting, they were euthanized for chemical, morphological, and proteomic analyses. Although kaolinite ingestion did not change the time needed for regaining prefasting body mass, daily food ingestion was seen to decrease by 6.8% compared with normally refed rats, without affecting lipid composition. Along the intestinal lining, enterocytes of complemented animals contained abundant lipid droplets and a structural modification of the brushborder was observed. Moreover, the expression of two apolipoproteins involved in lipid transport and satiety (ApoA-I and ApoA-IV) increased in complemented rats. These results suggest that kaolinite complementation favors intestinal nutrient absorption during refeeding despite reduced food uptake. Within the intestinal lumen, clay particles could increase the passive absorption capacity and/or nutrient availability that induce mucosal morphological changes. Therefore, clay ingestion appears to be beneficial for individuals undergoing extreme nutritional conditions such as refeeding and limited food supplies.


Assuntos
Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Caulim/farmacologia , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteínas A/metabolismo , Peso Corporal , Metabolismo Energético/fisiologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Caulim/administração & dosagem , Metabolismo dos Lipídeos , Masculino , Microvilosidades/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
9.
Fundam Clin Pharmacol ; 26(5): 565-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21801202

RESUMO

Geophagia is found in various animal species and in humans. We have previously shown that spontaneously ingested kaolinite interacts with the intestinal mucosa modifies nutrient absorption and slows down gastric emptying and intestinal transit in rats in vivo. However, the precise mechanisms involved are not elucidated. The aim of this work was to investigate the effects of controlled kaolinite ingestion on food intake, gut morphology and in vitro motility in rats. Male Wistar rats were fed with 5% kaolinite in standard food pellets during 7, 14 and 28 days. Body mass and food consumption were measured daily. Intestinal morphological and proteomic analyses were conducted. The length of mucosal lacteals was evaluated. Plasmatic levels of leptin and adiponectin were determined. Finally, organ bath studies were conducted to evaluate smooth muscle contractility. Food consumption was significantly increased during the first two weeks of kaolinite ingestion without any mass gain compared to controls. Kaolinite induced weak variations in proteins that are involved in various biological processes. Compared to control animals, the length of intestinal lacteals was significantly reduced in kaolinite group whatever the duration of the experiment. Leptin and adiponectin plasmatic levels were significantly increased after 14 days of kaolinite consumption. Changes in spontaneous motility and responses to electrical nerve stimulation of the jejunum and proximal colon were observed at day 14. Altogether, the present data give evidence for a modulation by kaolinite-controlled ingestion on satiety and anorexigenic signals as well as on intestinal and colonic motility.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Caulim/farmacologia , Adiponectina/sangue , Animais , Estimulação Elétrica , Técnicas In Vitro , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Caulim/administração & dosagem , Leptina/sangue , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
10.
Fundam Clin Pharmacol ; 23(1): 69-79, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19267772

RESUMO

Although some of the effects of clay ingestion by humans and animals, such as gastrointestinal wellness and the increase in food efficiency are well known, the underlying mechanisms are not yet fully understood. Therefore, the interactions between the intestinal mucosa and kaolinite particles and their effects on mucosal morphology were observed using light microscopy (LM), transmission electron microscopy (TEM), conventional (CSEM) and environmental (ESEM) scanning electron microscopy combined with an EDX micro-analysis system. Kaolinite consumption, given with free access to rats, varied considerably from one animal to the other but was regular through time for each individual. Some kaolinite particles appeared chemically dissociated in the lumen and within the mucus barrier. Aluminium (Al) originating from ingested clay and present in the mucus layer could directly cross the intestinal mucosa. A significant increase in the thickness of the villi with large vacuoles at the base of the mucosal cells and a decrease in the length of enterocyte microvilli characterized complemented animals. The proteomic analyses of the intestinal mucosa of complemented rats also revealed several modifications in the expression level of cytoskeleton proteins. In summary, kaolinite particles ingested as food complement interact with the intestinal mucosa and modify nutrient absorption. However, these data, together with the potential neurotoxicity of Al, need further investigation.


Assuntos
Silicatos de Alumínio/química , Mucosa Intestinal/efeitos dos fármacos , Caulim/farmacologia , Silicatos de Alumínio/farmacocinética , Animais , Transporte Biológico , Argila , Proteínas do Citoesqueleto/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Caulim/administração & dosagem , Masculino , Microscopia/métodos , Microscopia Eletrônica de Varredura/métodos , Microvilosidades/efeitos dos fármacos , Proteômica , Ratos , Ratos Wistar
11.
Br J Nutr ; 102(2): 249-57, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19138447

RESUMO

Consumption by animals and humans of earthy materials such as clay is often related to gut pathologies. Our aim was to determine the impact of kaolinite ingestion on glucose and NEFA transport through the intestinal mucosa. The expression of hexose transporters (Na/glucose co-transporter 1 (SGLT1), GLUT2, GLUT5) and of proteins involved in NEFA absorption (fatty acid transporter/cluster of differentiation 36 (FAT/CD36), fatty acid transport protein 4 (FATP4) and liver fatty acid binding protein (L-FABP)) was measured (1) in rats whose jejunum was perfused with a solution of kaolinite, and (2) in rats who ate spontaneously kaolinite pellets during 7 and 28 d. Also, we determined TAG and glucose absorption in the kaolinite-perfused group, and pancreatic lipase activity, gastric emptying and intestinal transit in rats orally administered with kaolinite. Glucose absorption was not affected by kaolinite perfusion or ingestion. However, kaolinite induced a significant increase in intestinal TAG hydrolysis and NEFA absorption. The cytoplasmic expression of L-FABP and FATP4 also increased due to kaolinite ingestion. NEFA may enter the enterocytes via endocytosis mainly since expression of NEFA transporters in the brush-border membrane was not affected by kaolinite. After uptake, rapid binding of NEFA by L-FABP and FATP4 could act as an intracellular NEFA buffer to prevent NEFA efflux. Increased TAG hydrolysis and NEFA absorption may be due to the adsorption properties of clay and also because kaolinite ingestion caused a slowing down of gastric emptying and intestinal transit.


Assuntos
Antidiarreicos/administração & dosagem , Ácidos Graxos não Esterificados/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Caulim/administração & dosagem , Triglicerídeos/metabolismo , Administração Oral , Animais , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/genética , Esvaziamento Gástrico/fisiologia , Trânsito Gastrointestinal , Glucose/metabolismo , Transportador de Glucose Tipo 5/genética , Hidrólise , Lipase/análise , Masculino , RNA Mensageiro/análise , Ratos , Ratos Wistar , Transportador 1 de Glucose-Sódio/genética , Triglicerídeos/análise
12.
Pflugers Arch ; 455(2): 323-32, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17638014

RESUMO

Intestinal villus atrophy through prolonged fasting was studied according to two different metabolic phases reached by fasting animals and characterized by (a) the mobilization of fat stores as body fuel and (b) an increase in protein catabolism for energy expenditure. The mechanisms involved in the rapid jejunal restoration after refeeding were also determined. Mucosal structural atrophy during fasting proved to worsen over the two phases due mainly to the retraction of the lacteals in the lamina propria, as observed through the immunolocalization of aquaporin 1 in the endothelial cells of the lymphatic vessels and the detachment of the basal membrane of the epithelial lining at the tip of the villi. Microvilli surface area is preserved through fasting, and apical PepT1 expression increases during both metabolic fasting phases. Refeeding after both fasting phases induces an increase in FATP4 accompanied by a rapid lipid uptake by the enterocytes at the tip of the villi and a rapid extension of the lamina propria due to inflated lymphatic vessels. These mechanisms were more prevalent in animals refed after the phase III fast and could be considered as the major processes allowing complete morphological restoration of the jejunum within only 3 days after refeeding.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Jejum/fisiologia , Mucosa Intestinal/patologia , Animais , Apoptose/fisiologia , Aquaporina 1/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Metabolismo dos Lipídeos/fisiologia , Masculino , Microvilosidades/metabolismo , Microvilosidades/patologia , Microvilosidades/ultraestrutura , Transportador 1 de Peptídeos , Ratos , Ratos Wistar , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...