RESUMO
Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.
Assuntos
Canavalia , Lectinas , Lectinas/farmacologia , Lectinas/análise , Canavalia/metabolismo , Simulação de Acoplamento Molecular , Lectinas de Plantas/metabolismo , Sementes/metabolismo , Carboidratos/análise , Polissacarídeos/análiseRESUMO
Lectins from plants of the Diocleinae subtribe often exhibit specificity towards mannose/glucose and derived sugars, with some plants also displaying a second lectin specific to lactose/GalNAc. Here, we present a novel lectin from Collaea speciosa, named CsL, that displays specificity for GlcNAc/glucose. The lectin was extracted from Collaea speciosa seeds and purified by a single chromatographic step on a Sephadex G-50 matrix. In solution, the lectin appears as a dimeric protein composed of 25 kDa monomers. The protein is stable at pH 7-8 and dependent on divalent cations. CsL maintained its agglutination activity after heating to 90 °C for 1 h. Glycan array studies revealed that CsL binds to N-glycans with terminal GlcNAc residues, chitobiose and chitotriose moieties. The partial amino acid sequence of the lectin is similar to that of some lactose-specific lectins from the same subtribe. In contrast to other ConA-like lectins, CsL is not toxic to Artemia. Because of its remarkably different properties and specificity, this lectin could be the first member of a new group inside the Diocleinae lectins.