Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22235, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097630

RESUMO

Archaeologists have long been puzzled by the exact age of Paleolithic cave art in Europe especially in the Franco-Cantabrian region with hundreds of decorated caves because the creation of this parietal art (paintings, drawings and engravings) is closely tied to the appearance of first modern humans in Europe and their ways of life. The Dordogne region, one of the richest regions in terms of Paleolithic cave art in the world with more than 200 cave sites, is currently known to provide figures of cave art solely made with mineral coloring matters that cannot be dated directly. Using in-situ non-invasive Raman spectroscopy combined with portable X-ray fluorescence analysis as well as visible and infrared imaging of the decor of the Font-de-Gaume cave, we show the presence of a large number of charcoal-based Paleolithic figures besides others made of iron and manganese oxides in the main galleries for the first time. The creation periods of the cave art at Font-de-Gaume are mainly attributed to the Magdalenian period and probably more complicated constituted of at least two creation phases than commonly established as shown by the direct or partial superimposition of carbon-based and iron- and/or manganese-based figures. Our new results contribute to a better understanding of the organisation of the ornamentation and thus of the imaginary language of our Prehistoric ancestors. The discovery opens new research possibilities for re-reading of the complex panels and absolute radiocarbon dating.

3.
Sci Rep ; 12(1): 113, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996914

RESUMO

Ion beam analysis plays an important role in cultural heritage (CH) studies as it offers a combination of simultaneous and complementary analytical techniques (PIXE/PIGE/RBS) and spatially resolved mapping functions. Despite being considered non-destructive, the potential risk of beam-induced modifications during analysis is increasingly discussed. This work focuses on the impact of proton beams on parchment, present in our CH in form of unique historical manuscripts. Parchment is one of the organic, protein-based CH materials believed to be the most susceptible to radiation-induced changes. Various modification patterns, observed on parchment cross-sections by optical and electron microscopy are reported: discoloration (yellowing), formation of cavities and denaturation of collagen fibers. Considerable modifications were detected up to 100 µm deep into the sample for beam fluences of 4 µC/cm2 and higher. The presence of ultramarine paint on the parchment surface appears to increase the harmful effects of proton radiation. Based on our results, a maximum radiation dose of 0.5 µC/cm2 can be considered as 'safe boundary' for 2.3 MeV PIXE analysis of parchment under the applied conditions.

4.
Sci Rep ; 11(1): 8249, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859211

RESUMO

Many works of art have been attributed to Leonardo da Vinci (1452-1519), the great artist-scientist-engineer of the Italian Renaissance; however, art historians have struggled to find definitive proof to connect Leonardo to these art pieces. The Flora wax bust in the Bode Museum, Berlin, was attributed to Leonardo because her face resembles several Leonardo portraits, but this attribution has the subject of intense debate since the bust's acquisition in 1909. Using new chemical analyses and absolute 14C dating, we are able to resolve the question of authenticity. We show that the Flora wax bust is made primarily of spermaceti which was extracted from sperm whales. Therefore, 14C dating must consider the Marine Reservoir Effect. We have generated a new calibration method and dated the bust to the 19th c. This proves that the bust was not produced during the Renaissance, and thus cannot be attributed to da Vinci, and illustrates that 14C dating can be applied to unusual materials.

5.
Angew Chem Int Ed Engl ; 57(25): 7428-7432, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29522651

RESUMO

Among the earliest Homo sapiens societies in Eurasia, the Aurignacian phase of the Early Upper Paleolithic, approximately 40 000-30 000 years ago, mammoth ivory assumed great social and economic significance, and was used to create hundreds of personal ornaments as well as the earliest known works of three-dimensional figurative art in the world. This paper reports on the results of micro-PIXE/PIGE analyses of mammoth-ivory artifacts and debris from five major sites of Aurignacian ivory use. Patterns of variable fluorine content indicate regionally distinctive strategies of ivory procurement that correspond to apparent differences in human-mammoth interactions. Preserved trace elements (Br, Sr, Zn) indicate that differences at the regional level are applicable to sourcing Paleolithic ivory at the regional scale.


Assuntos
Arqueologia , Mamutes/anatomia & histologia , Espectrometria por Raios X/métodos , Dente/química , Animais , Oligoelementos/análise
6.
PLoS One ; 12(4): e0176179, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423023

RESUMO

Nanoscale studies of bone provide key indicators to evidence subtle structural changes that may occur in the biomedical, forensic and archaeological contexts. One specific problem encountered in all those disciplines, for which the identification of nanostructural cues could prove useful, is to properly monitor the effect of heating on bone tissue. In particular, the mechanisms at work at the onset of heating are still relatively unclear. Using a multiscale approach combining Raman microspectroscopy, transmission electron microscopy (TEM), synchrotron quantitative scanning small-angle X-ray scattering imaging (qsSAXSI) and polarized light (PL) microscopy, we investigate the ultrastructure of cortical bovine bone heated at temperatures < 300°C, from the molecular to the macroscopic scale. We show that, despite limited changes in crystal structure, the mineral nanoparticles increase in thickness and become strongly disorganized upon heating. Furthermore, while the nanostructure in distinct anatomical quadrants appears to be statistically different, our results demonstrate this stems from the tissue histology, i.e. from the high degree of heterogeneity of the microstructure induced by the complex cellular processes involved in bone tissue formation. From this study, we conclude that the analysis of bone samples based on the structure and organization of the mineral nanocrystals requires performing measurements at the histological level, which is an advantageous feature of qsSAXSI. This is a critical aspect that extends to a much broader range of questions relating to nanoscale investigations of bone, which could also be extended to other classes of nanostructured heterogeneous materials.


Assuntos
Osso Cortical/ultraestrutura , Nanoestruturas/ultraestrutura , Animais , Bovinos , Calefação , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Análise Espectral Raman , Difração de Raios X
7.
PLoS One ; 12(1): e0166671, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125603

RESUMO

Macroscopic, periodic, dark and bright patterns are observed on sections of elephant tusk, in the dentin part (ivory). The motifs-also called Schreger pattern-vary depending on the orientation in the tusk: on sections perpendicular to the tusk axis, a checkerboard pattern is present whereas on sections longitudinal to it, alternating stripes are observed. This pattern has been used to identify elephant and mammoth ivory in archeological artifacts and informs on the continuous tissue growth mechanisms of tusk. However, its origin, assumed to be related to the 3D structure of empty microtubules surrounded by the ivory matrix has yet to be characterized unequivocally. Based on 2D observations of the ivory microtubules by means of a variety of imaging techniques of three different planes (transverse, longitudinal and tangential to the tusk axis), we show that the dark areas of the macroscopic pattern are due to tubules oblique to the surface whereas bright areas are related to tubules parallel to it. The different microstructures observed in the three planes as well as the 3D data obtained by SR-µCT analysis allow us to propose a 3D model of the microtubule network with helical tubules phase-shifted in the tangential direction. The phase shift is a combination of a continuous phase shift of π every 1 mm with a stepwise phase shift of π/2 every 500 µm. By using 3D modeling, we show how the 3D helical model better represents the experimental microstructure observed in 2D planes compared to previous models in the literature. This brings new information on the origin of the unique Schreger pattern of elephant ivory, crucial for better understanding how archaeological objects were processed and for opening new routes to rethink how biological materials are built.


Assuntos
Dentina/ultraestrutura , Microtúbulos/ultraestrutura , Dente/ultraestrutura , Animais , Elefantes/anatomia & histologia , Elefantes/fisiologia , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura , Síncrotrons , Microtomografia por Raio-X
8.
Top Curr Chem (Cham) ; 374(1): 7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27572990

RESUMO

Synchrotrons have provided significant methods and instruments to study ancient materials from cultural and natural heritages. New ways to visualise (surfacic or volumic) morphologies are developed on the basis of elemental, density and refraction contrasts. They now apply to a wide range of materials, from historic artefacts to paleontological specimens. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Although, until recently, photon-based speciation was mainly applicable to inorganic materials, novel developments based, for instance, on STXM and deep UV photoluminescence bring new opportunities to study speciation in organic and hybrid materials, such as soaps and organometallics, at a submicrometric spatial resolution over large fields of view. Structural methods are also continuously improved and increasingly applied to hierarchically structured materials for which organisation results either from biological or manufacturing processes. High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.


Assuntos
Arqueologia , Paleontologia , Síncrotrons , História Antiga , Humanos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
9.
PLoS One ; 10(8): e0134429, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284623

RESUMO

In the Mediterranean, the island dwarf megafaunas became extinct around the end of the Pleistocene, during a period of rapid and global climate change. In Cyprus, this coincided with the first human presence on the island, as attested by the rock shelter of Akrotiri-Aetokremnos where an Epipaleolithic anthropogenic layer (stratum 2) was found overlying a massive accumulation of pygmy hippopotamus (Phanourios minor (Desmarest, 1822)) [Boekschoten and Sondaar, 1972] bones (stratum 4). The relationship between the two layers is highly controversial and the role played by humans in hippo extinction remains fiercely debated. Here, we provide new, direct radiocarbon and physico-chemical analyses on calcined bones which elucidates the complex depositional history of the assemblage. Bone turquoise was identified using micro-PIXE analysis and depth-profiling together with Vis spectroscopy, demonstrating that these bones were not freshly burned. Bayesian modeling of the radiocarbon dates indicates that stratum 4 accumulated during the first half of the 13th mill cal BP and that calcination occurred several hundred years later. We conclude that accumulation occurred naturally during the beginning of the Younger Dryas and that Epipalaeolithic visitors subsequently used the bones as fuel, starting from the mid-13th mill cal BP. At that time, dwarf hippos were probably already extinct or at least highly endangered. Our results shed new light on the possible causes of hippo extinction, on the subsequent introduction of the wild boar and on the earliest occupation of the island by humans.


Assuntos
Artiodáctilos , Fenômenos Químicos , Datação Radiométrica , Animais , Evolução Biológica , Osso e Ossos/química , Chipre , Extinção Biológica , Humanos
10.
Talanta ; 137: 100-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770612

RESUMO

Antique objects are known to have been brightly colored. However, the appearance of these objects has changed over time and paint traces are rarely preserved. The surface of ivory objects (8th century B.C., Syria) from the Louvre museum collection (Paris) have been non-invasively studied by simultaneous particle-induced X-ray emission (PIXE) and Rutherford and elastic backscattering spectrometry (RBS/EBS) micro-imaging at the AGLAE facility (C2RMF, Paris). Qualitative 2D chemical images of elements ranging from Na to Pb on the surface of the ancient ivory carvings provide evidence of lost polychromy and gilding. Quantitative PIXE data of specific areas allow discrimination between traces of sediments and former polychromy. Different shades of blue can be differentiated from particular Pb/Cu ratios. The characterization of gilding based on RBS data demonstrates the exceptional technological skills of the Phoenician craftsmen supposed to have carved the Arslan Tash ivories. More precise reconstructions of the original polychromy compared to previous studies and a criterion for the authentication of ancient gilded ivory object are proposed.

11.
Angew Chem Int Ed Engl ; 53(32): 8363-6, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24966058

RESUMO

A one-step method is reported to synthesize hybrid gold nanoparticles (AuNPs) by reduction of HAuCl4 in acetic solution in the presence of collagen (Col), dicarboxylic acid-terminated polyethylene glycol (PEG), and cetyltetrammonium bromide (CTAB) mixed with hydoxyapatite (HAP) as surfactants. Such formation process of AuNPs was shown to be responsible for purple stains naturally formed on Egyptianizing archaeological gilded ivories from 8th BC Syria. The understanding of this formation mechanism, which most likely involves a step with hybrid AuNPs, allows the establishing of an authenticity marker of ancient gold-plated ivories.


Assuntos
Colágeno/química , Colágeno/síntese química , Ouro/química , Nanopartículas
12.
Microsc Microanal ; 19(6): 1523-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24001921

RESUMO

Biosynthetic calcite samples were investigated using combined synchrotron X-ray microspectroscopy mapping. These samples were prepared with bacteria isolated from the Large cave of Arcy-sur-Cure in which prehistoric figures are masked by an opaque calcite layer. The biotic or abiotic origin of this layer is the issue of the present work. As previously known, a large community of bacteria may be involved in the CaCO3 formation in caves. A mixture of calcite/vaterite was obtained from bacteria isolated from the cave. Therefore, we can offer conclusions on their calcifying capability. The rare presence of vaterite in cave environments may be treated as a marker of biotic carbonate formations. Moreover, an amorphous calcium phosphate phase was present in the form of a calcite/vaterite mixture in the biotic model samples. This mixture of phases could be used as a tracer of the biotic process of CaCO3 formation. These biotic tracer phases were not identified using the applied analytical methods in the natural samples taken from the opaque calcite layers that covered the prehistoric figures of the Large cave. In this case, based on the obtained results, the biotic calcite formation process is likely to be considered as an undetectable effect at minimum.


Assuntos
Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Fósseis , Microanálise por Sonda Eletrônica , França
13.
Anal Chem ; 85(12): 5857-66, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23662905

RESUMO

Phoenician ivory objects (8(th) century B.C., Syria) from the collections of the Badisches Landesmuseum, Karlsruhe, Germany, have been studied with full field X-ray fluorescence microimaging, using synchrotron radiation (SR-FF-microXRF). The innovative Color X-ray Camera (CXC), a full-field detection device (SLcam), was used at the X-ray fluorescence beamline of the ANKA synchrotron facility (ANKA-FLUO, KIT, Karlsruhe, Germany) to noninvasively study trace metal distributions at the surface of the archeological ivory objects. The outstanding strength of the imaging technique with the CXC is the capability to record the full XRF spectrum with a spatial resolution of 48 µm on a zone of a size of 11.9 × 12.3 mm(2) (264 × 264 pixels). For each analyzed region, 69696 spectra were simultaneously recorded. The principal elements detected are P, Ca, and Sr, coming from the ivory material itself; Cu, characteristic of pigments; Fe and Pb, representing sediments or pigments; Mn, revealing deposited soil minerals; Ti, indicating restoration processes or correlated with Fe sediment traces; and Au, linked to a former gilding. This provides essential information for the assessment of the original appearance of the ivory carvings. The determined elemental maps specific of possible pigments are superimposed on one another to visualize their respective distributions and reconstruct the original polychromy and gilding. Reliable hypotheses for the reconstruction of the original polychromy of the carved ivories are postulated on this basis.

14.
Anal Chem ; 85(3): 1650-6, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23234594

RESUMO

Fingerprinting ancient gold work requires the use of nondestructive techniques with high spatial resolution (down to 25 µm) and good detection limits (micrograms per gram level). In this work experimental setups and protocols for synchrotron radiation induced X-ray fluorescence (SRXRF) at the BAMline of the Berlin electron storage ring company for synchrotron radiation (BESSY) in Berlin for the measurement of characteristic trace elements of gold are compared considering the difficulties, shown in previous works, connected to the quantification of Pt. The best experimental conditions and calculation methods were achieved by using an excitation energy of 11.58 keV, a silicon drift chamber detector (SDD) detector, and pure element reference standards. A detection limit of 3 µg/g has been reached. This newly developed method was successfully applied to provenancing the Xiongnu gold from the Gol Mod necropolis, excavated under the aegis of the United Nations Educational, Scientific and Cultural Organization (UNESCO). The composition of the base alloys and the presence of Pt and Sn showed that, contrary to what is expected, the gold foils from the first powerful empire of the steppes along the Great Wall were produced with alluvial gold from local placer deposits located in Zaamar, Boroo, and in the Selenga River.

15.
Talanta ; 85(1): 556-61, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21645741

RESUMO

Chemical imaging studies of pharmaceutical tablets are currently an important emerging field in the pharmaceutical industry. Finding the distribution of the different compounds inside the tablet is an important issue for production quality control but also for counterfeit detection. Most of the currently used techniques are limited to the study of the surface of the compacts, whereas the study of the bulk requires a time-consuming sample preparation. In this paper, we present the use of 3D micro-X-ray fluorescence analysis (3D µXRF) for the non-destructive study of pharmaceutical tablets. Based on two different examples, it was shown that it was possible to measure the distribution of several inorganic elements (Zn, Fe, Ti, Mn, Cu) from the surface to a depth of several hundred microns under the surface. The X-ray absorption, depending on both matrix composition and energy, is one of the most critical factors of this analytical method while performing depth profiling or mapping. Therefore, an original method to correct the absorption, in order to accurately measure the true elemental distribution, was proposed. Moreover, by using the presence of titanium dioxide in a pharmaceutical coating, we proved that this technique is also suited to the non-destructive measurement of coating thickness.


Assuntos
Imageamento Tridimensional/métodos , Metais Pesados/análise , Microscopia Confocal/instrumentação , Preparações Farmacêuticas/análise , Comprimidos/análise , Desenho de Equipamento , Fluorescência , Microscopia Confocal/métodos , Raios X
16.
Anal Bioanal Chem ; 397(6): 2491-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506017

RESUMO

Archaeological bone materials record characteristic markers of life in prehistoric times (dating, climate, environment, diet, human migration) in their isotopic and chemical composition in addition to palaeontological, archaeozoological, anthropological and palaeogenetic information. Thus, the discovery and conservation of archaeological bone materials is of great importance to get access to this information. However, archaeological materials are altered by different postmortem processes and it appears necessary to estimate if the archaeological information is still reliable or if it has been modified during burial. As archaeological bone materials present a high structural hierarchy at the micro- and nanoscale, changes induced by diagenetic phenomena have to be observed at these scales. One method for revealing post mortem changes of the bone structure and composition at the microscale is synchrotron radiation micro-FTIR imaging (SR micro-FTIR). Thus, thin sections of about 5,000-year-old archaeological bones have been analysed in transmission mode at the IRIS beamline (BESSY II, HZB Berlin) to determine markers of the state of bone preservation at the microscale. The archaeological bone material comes from station 19 of the Neolithic site of the Chalain Lake. By using SR micro-FTIR it was possible to image characteristic bone structures, e.g. osteons (the constitutive histological unit of cortical bone), using the absorption band ratios corresponding to different chemical bone constituents (collagen content and quality, phosphate crystallinity, carbonate content). These data allow us to precisely evaluate the state of preservation of a 5,000-year-old bone at the histological level.


Assuntos
Arqueologia/métodos , Osso e Ossos , Imageamento Tridimensional , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/química , Humanos , Microscopia , Síncrotrons
17.
Anal Bioanal Chem ; 393(3): 1025-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19030848

RESUMO

The paper presents an analytical method developed for the nondestructive study of nineteenth-century Persian polychrome underglaze painted tiles. As an example, 9 tiles from French and German museum collections were investigated. Before this work was undertaken little was known about the materials used in pottery at that time, although the broad range of colors and shades, together with their brilliant glazes, made these objects stand out when compared with Iranian ceramics of the preceding periods and suggested the use of new pigments, colorants, and glaze compositions. These materials are thought to be related to provenance and as such appropriate criteria for art-historical attribution. The analytical method is based on the combination of different nondestructive spectroscopic techniques using microfocused beams such as proton-induced X-ray emission/proton-induced gamma-ray emission, X-ray fluorescence, 3D X-ray absorption near edge structure, and confocal Raman spectroscopy and also visible spectroscopy. It was established to address the specific difficulties these objects and the technique of underglaze painting raise. The exact definition of the colors observed on the tiles using the Natural Color System helped to attribute them to different colorants. It was possible to establish the presence of Cr- and U-based colorants as new materials in nineteenth-century Persian tilemaking. The difference in glaze composition (Pb, Sn, Na, and K contents) as well as the use of B and Sn were identified as a potential marker for different workshops.


Assuntos
Cerâmica/química , Pintura/análise , Boro/análise , Boro/história , Cerâmica/história , História do Século XIX , Irã (Geográfico) , Chumbo/análise , Chumbo/história , Pintura/história , Potássio/análise , Potássio/história , Sódio/análise , Sódio/história , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Análise Espectral Raman , Estanho/análise , Estanho/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...