Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4310, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879348

RESUMO

Anthropogenic nitrogen inputs cause major negative environmental impacts, including emissions of the important greenhouse gas N2O. Despite their importance, shifts in terrestrial N loss pathways driven by global change are highly uncertain. Here we present a coupled soil-atmosphere isotope model (IsoTONE) to quantify terrestrial N losses and N2O emission factors from 1850-2020. We find that N inputs from atmospheric deposition caused 51% of anthropogenic N2O emissions from soils in 2020. The mean effective global emission factor for N2O was 4.3 ± 0.3% in 2020 (weighted by N inputs), much higher than the surface area-weighted mean (1.1 ± 0.1%). Climate change and spatial redistribution of fertilisation N inputs have driven an increase in global emission factor over the past century, which accounts for 18% of the anthropogenic soil flux in 2020. Predicted increases in fertilisation in emerging economies will accelerate N2O-driven climate warming in coming decades, unless targeted mitigation measures are introduced.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Agricultura , Atmosfera , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Solo
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190507, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892728

RESUMO

In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO2 fluxes over Europe based on an ensemble of 11 dynamic global vegetation models (DGVMs), and the observation-based FLUXCOM product. We find that all DH events were associated with decreases in net ecosystem productivity (NEP), but the gross summer flux anomalies differ between DGVMs and FLUXCOM. At the annual scale, FLUXCOM and DGVMs indicate close to neutral or above-average land CO2 uptake in DH2003 and DH2018, due to increased productivity in spring and reduced respiration in autumn and winter compensating for less photosynthetic uptake in summer. Most DGVMs estimate lower gross primary production (GPP) sensitivity to soil moisture during extreme summers than FLUXCOM. Finally, we show that the different impacts of the DH events at continental-scale GPP are in part related to differences in vegetation composition of the regions affected and to regional compensating or offsetting effects from climate anomalies beyond the DH centres. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Dióxido de Carbono/análise , Mudança Climática , Secas , Ecossistema , Clima Extremo , Temperatura Alta , Ciclo do Carbono , Europa (Continente) , Calor Extremo , Modelos Teóricos , Estações do Ano
3.
Sci Adv ; 6(24): eaba2724, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32577519

RESUMO

In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, contributed to fast soil moisture depletion, amplifying the summer drought. We find regional asymmetries in summer ecosystem carbon fluxes: increased (reduced) sink in the northern (southern) areas affected by drought. These asymmetries can be explained by distinct legacy effects of spring growth and of water-use efficiency dynamics mediated by vegetation composition, rather than by distinct ecosystem responses to summer heat/drought. The asymmetries in carbon and water exchanges during spring and summer 2018 suggest that future land-management strategies could influence patterns of summer heat waves and droughts under long-term warming.

4.
Nat Commun ; 7: 13717, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966534

RESUMO

The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Florestas , Atmosfera/química , Monitoramento Ambiental , Agricultura Florestal
5.
Ecol Lett ; 15(6): 520-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22472207

RESUMO

Trees with sufficient nutrition are known to allocate carbon preferentially to aboveground plant parts. Our global study of 49 forests revealed an even more fundamental carbon allocation response to nutrient availability: forests with high-nutrient availability use 58 ± 3% (mean ± SE; 17 forests) of their photosynthates for plant biomass production (BP), while forests with low-nutrient availability only convert 42 ± 2% (mean ± SE; 19 forests) of annual photosynthates to biomass. This nutrient effect largely overshadows previously observed differences in carbon allocation patterns among climate zones, forest types and age classes. If forests with low-nutrient availability use 16 ± 4% less of their photosynthates for plant growth, what are these used for? Current knowledge suggests that lower BP per unit photosynthesis in forests with low- versus forests with high-nutrient availability reflects not merely an increase in plant respiration, but likely results from reduced carbon allocation to unaccounted components of net primary production, particularly root symbionts.


Assuntos
Biomassa , Ciclo do Carbono , Árvores/crescimento & desenvolvimento , Processos Autotróficos , Carbono/metabolismo , Respiração Celular , Clima , Agricultura Florestal , Fotossíntese , Raízes de Plantas/microbiologia , Árvores/metabolismo , Árvores/microbiologia
6.
Biogeosciences ; 7(7): 2147-2157, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23293656

RESUMO

Soil respiration (SR) constitutes the largest flux of CO(2) from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SR(MAT)), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q(10)). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SR(MAT) corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SR(MAT) for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO(2) emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.

7.
Nature ; 437(7058): 529-33, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16177786

RESUMO

Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr(-1)) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.


Assuntos
Dióxido de Carbono/metabolismo , Produtos Agrícolas/metabolismo , Desastres , Ecossistema , Efeito Estufa , Temperatura Alta , Atmosfera/química , Carbono/metabolismo , Europa (Continente) , Chuva , Fatores de Tempo
8.
Br J Psychiatry ; 139: 519-22, 1981 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7332856

RESUMO

Similarities between language disorders in aphasia and formal thought disorder in schizophrenia are explored in 24 schizophrenic, 5 manic and 5 depressed psychiatric in-patients, and 28 normal controls. Eight sub-tests from the Boston Diagnostic Aphasia Examination, a picture naming test and the Token test were administered. Schizophrenics with formal thought disorder showed significant abnormalities compared to all other groups, particularly on the Token Test and the repetition of phrases test. These deficits are suggestive of language comprehension and repetition dysfunctions in a substantial minority of rigorously defined schizophrenics.


Assuntos
Afasia/psicologia , Transtornos da Linguagem/psicologia , Linguagem do Esquizofrênico , Adulto , Transtorno Bipolar/psicologia , Humanos , Transtornos do Humor/psicologia , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...