Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207162

RESUMO

Electrodialysis (ED) is a promising technology suitable for nutrient recovery from a wide variety of liquid waste streams. For optimal operating conditions, the limiting current density (LCD) has to be determined separately for each treated feed and ED equipment. LCD is most frequently assessed in the NaCl solutions. In this paper, five graphical methods available in literature were reviewed for LCD determination in a series of five feed solutions with different levels of complexity in ion and matrix composition. Wastewater from microbial fermentation was included among the feed solutions, containing charged and uncharged particles. The experiments, running in the batch ED with an online conductivity, temperature, and pH monitoring, were conducted to obtain data for the comparison of various LCD determination methods. The results revealed complements and divergences between the applied LCD methods with increasing feed concentrations and composition complexity. The Cowan and Brown method had the most consistent results for all of the feed solutions. Online conductivity monitoring was linearly correlated with the decreasing ion concentration in the feed solution and corresponding LCD. Therefore, the results obtained in this study can be applied as a base for the automatized dynamic control of the operating current density-voltage in the batch ED. Conductivity alone should not be used for the ED control since LCD depends on the ion exchange membranes, feed flow, temperature and concentration, ionic species, their concentration ratios, and uncharged particles of the feed solution.

2.
Water Res ; 164: 114916, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394466

RESUMO

Free DNA in the effluent from wastewater treatment plants has recently been observed to contain antibiotic resistance genes (ARGs), which may contribute to the spread of antibiotic resistance via horizontal gene transfer in the receiving environment. Technical membrane systems applied in wastewater and drinking water treatment are situated at central nodes between the environmental and human related aspects of the "One Health" approach and are considered as effective barriers for antibiotic resistant bacteria. However, they are not evaluated for their permeability for ARGs encoded in free DNA, which may result, for example, from the release of free DNA after bacterial die-off during particular treatment processes. This study examined the potential and principle mechanisms for the removal of free DNA containing ARGs by technical membrane filtration. Ten different membranes, varied by the charge (neutral and negative) and the molecular weight cut off (in a range from microfiltration to reverse osmosis), were tested for the removal of free DNA (pure supercoiled and linearized plasmids encoding for ARGs and free linear chromosomal DNA with a broader fragment size spectrum) in different water matrices (distilled water and wastewater treatment plant effluent). Our results showed that membranes with a molecular weight cut off smaller than 5000 Da (ultrafiltration, nanofiltration and reverse osmosis) could retain ≥99.80% of free DNA, both pure plasmid and linear fragments of different sizes, whereas microfiltration commonly applied in wastewater treatment showed no retention. Size exclusion was identified as the main retention mechanism. Additionally, surface charging of the membrane and adsorption of free DNA on the membrane surface played a key role in prevention of free DNA permeation. Currently, majority of the applied membranes is negatively charged to prevent adsorption of natural organic matter. In our study, negatively charged membranes showed lower retention of free DNA compared to neutral ones due to repulsion of free DNA molecules, reduced adsorption and decreased blockage of the membrane surface. Therefore, the applied membrane may not be as an effective barrier for ARGs encoded in free DNA, as it would be predicted based only on the molecular weight cut off. Thus, careful considerations of membrane's specifications (molecular weight cut-off and charge) are required during design of a filtration system for retention of free DNA.


Assuntos
Águas Residuárias , Purificação da Água , Antibacterianos , DNA , Resistência Microbiana a Medicamentos , Genes Bacterianos , Humanos , Osmose , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...