Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1734: 465251, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39191184

RESUMO

In this study, we propose a model for the simulation of the pH-dependent separation of dicarboxylic acids from aqueous solutions using strongly hydrophobic adsorbents. Building upon results of our previous study, where we experimentally investigated the pH-dependent adsorption behavior of the individual acid species of itaconic acid (IA) on a strongly hydrophobic adsorbent using in-line Raman spectroscopy, we utilize a transport-dispersive model as the basis for our simulation model. Instead of considering IA as a single component in our model, we simulated each acid species of IA individually. For this purpose, we expanded the transport-dispersive model with reaction terms in all aqueous phases. The reaction terms include all dissociation reactions of all involved components for each time step and spatial discretization. This model enables the time and spatial dependent simulation of the pH value in the chromatographic column and thus the time and spatial dependent knowledge of each acid species concentration. The consideration of activity coefficients due to high local ionic strength is achieved using the Truesdell-Jones (TdJ) model. The simulation model is successfully validated using experimental data from our previous study and used in a simulation study that demonstrates the potential of the model approach for analyzing associated separation tasks.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Succinatos , Succinatos/química , Concentração de Íons de Hidrogênio , Adsorção , Modelos Químicos , Análise Espectral Raman , Concentração Osmolar
2.
J Chromatogr A ; 1675: 463140, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35635868

RESUMO

The use of adsorption for the purification of dicarboxylic acids is rather limited and currently predominantly confined to ion-exchange chromatography. A promising, but less regarded alternative is the use of hydrophobic adsorbents. Regarding hydrophobic absorbents, the literature focuses on screenings of adsorbents for purification of (di)carboxylic acids with regard to adsorption equilibria. The investigation of dynamic phenomena in the column received only minor attention. In this contribution, this knowledge gap is addressed. First, the adsorption behavior of itaconic acid species on the hydrophobic, highly-crosslinked polymeric adsorbent Chromalite™ PCG1200C is investigated. For this purpose, adsorption isotherms are determined via frontal analysis at pH values of 2, 3, 4.5, 6.5, and 8 to evaluate the dependency of the adsorption capacity on the dissociation state. Capacities above 150 g Lads-1 at liquid phase concentrations of 70 g L-1 are observed at a pH of 2. A strong decrease of capacity with increasing pH value, i.e., with increasing fraction of dissociated negatively charged acid species, is observed. Second, pulse experiments at aforementioned pH values are performed. Thereby, in-line Raman spectra are recorded at the column outlet, which allows the direct differentiation of the acid species state of dissociation. The spectral information is evaluated for quantitative concentration profiles of itaconic acid species using Indirect Hard Modeling with mixture hard models that are calibrated subject to ideal as well as non-ideal thermodynamics. In-line measurement errors of ≤ 3.5 g L-1 are achieved for the itaconic acid species. In dependency of the pH of the feed solution, a separation of the individual acid species within the pulse experiments is observed. It is conjectured that the process is dominated by a superposition of species-dependent adsorption characteristics and dissociation reactions.


Assuntos
Análise Espectral Raman , Succinatos , Adsorção , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Polímeros , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA