Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 10): 1738-46, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15388919

RESUMO

The bacterial aminopeptidase isolated from the extracellular extract of Streptomyces griseus (SGAP) is a double-zinc exopeptidase with a high preference for large hydrophobic amino-terminus residues. It is a monomer of a relatively low molecular weight (30 kDa), is heat-stable, displays a high and efficient catalytic turnover and its activity is modulated by calcium ions. Several free amino acids were found to inhibit the activity of SGAP in the millimolar concentration range and can therefore serve for the study of binding of both inhibitors and reaction products. The current study is focused on the X-ray crystallographic analysis of the SGAP complexes with L-tryptophan and p-iodo-L-phenylalanine, both at 1.30 A resolution. These two bulky inhibitory amino acids were found to bind to the active site of SGAP in very similar positions and orientations. Both of them bind to the two active-site zinc ions via their free carboxylate group, while displacing the zinc-bound water/hydroxide that is present in the native enzyme. Further stabilization of the binding of the amino-acid carboxylate group is achieved by its relatively strong interactions with the hydroxyl group of Tyr246 and the carboxylate group of Glu131. The binding is also stabilized by three specific hydrogen bonds between the amine group of the bound amino acid and enzyme residues Glu131, Asp160 and Arg202. These consistent interactions confirm the key role of these residues in the specific binding of the free amine of substrates and products, as proposed previously. The phenyl ring of Phe219 of the enzyme is involved in stacking interactions with the corresponding aromatic ring of the bound affector. This interaction seems to be important for the binding and orientation of the aromatic side chain within the specificity pocket. These structural results correlate well with the results obtained for the complexes of SGAP with other inhibitory amino acids and support the general catalytic mechanism proposed for this and related enzymes.


Assuntos
Aminopeptidases/química , Fenilalanina/análogos & derivados , Streptomyces griseus/enzimologia , Aminoácidos/química , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Fenilalanina/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Triptofano/química , Zinco/química
2.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 5): 836-48, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15103129

RESUMO

Xylanases are hemicellulases that hydrolyze the internal beta-1,4-glycoside bonds of xylan. The extracellular thermostable endo-1,4-beta-xylanase (EC 3.2.1.8; XT6) produced by the thermophilic bacterium Geobacillus stearothermophilus T-6 was shown to bleach pulp optimally at pH 9 and 338 K and was successfully used in a large-scale biobleaching mill trial. The xylanase gene was cloned and sequenced. The mature enzyme consists of 379 amino acids, with a calculated molecular weight of 43 808 Da and a pI of 9.0. Crystallographic studies of XT6 were performed in order to study the mechanism of catalysis and to provide a structural basis for the rational introduction of enhanced thermostability by site-specific mutagenesis. XT6 was crystallized in the primitive trigonal space group P3(2)21, with unit-cell parameters a = b = 112.9, c = 122.7 A. A full diffraction data set for wild-type XT6 has been measured to 2.4 A resolution on flash-frozen crystals using synchrotron radiation. A fully exchanged selenomethionyl XT6 derivative (containing eight Se atoms per XT6 molecule) was also prepared and crystallized in an isomorphous crystal form, providing full selenium MAD data at three wavelengths and enabling phase solution and structure determination. The structure of wild-type XT6 was refined at 2.4 A resolution to a final R factor of 15.6% and an R(free) of 18.6%. The structure demonstrates that XT6 is made up of an eightfold TIM-barrel containing a deep active-site groove, consistent with its 'endo' mode of action. The two essential catalytic carboxylic residues (Glu159 and Glu265) are located at the active site within 5.5 A of each other, as expected for 'retaining' glycoside hydrolases. A unique subdomain was identified in the carboxy-terminal part of the enzyme and was suggested to have a role in xylan binding. The three-dimensional structure of XT6 is of great interest since it provides a favourable starting point for the rational improvement of its already high thermal and pH stabilities, which are required for a number of biotechnological and industrial applications.


Assuntos
Bacillaceae/enzimologia , Endo-1,4-beta-Xilanases/química , Matriz Extracelular/enzimologia , Selenometionina/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X/métodos , Endo-1,4-beta-Xilanases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...