Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Nat Commun ; 15(1): 3803, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778015

RESUMO

Human endogenous retroviruses (HERVs) are repetitive elements previously implicated in major psychiatric conditions, but their role in aetiology remains unclear. Here, we perform specialised transcriptome-wide association studies that consider HERV expression quantified to precise genomic locations, using RNA sequencing and genetic data from 792 post-mortem brain samples. In Europeans, we identify 1238 HERVs with expression regulated in cis, of which 26 represent expression signals associated with psychiatric disorders, with ten being conditionally independent from neighbouring expression signals. Of these, five are additionally significant in fine-mapping analyses and thus are considered high confidence risk HERVs. These include two HERV expression signatures specific to schizophrenia risk, one shared between schizophrenia and bipolar disorder, and one specific to major depressive disorder. No robust signatures are identified for autism spectrum conditions or attention deficit hyperactivity disorder in Europeans, or for any psychiatric trait in other ancestries, although this is likely a result of relatively limited statistical power. Ultimately, our study highlights extensive HERV expression and regulation in the adult cortex, including in association with psychiatric disorder risk, therefore providing a rationale for exploring neurological HERV expression in complex neuropsychiatric traits.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Retrovirus Endógenos , Estudo de Associação Genômica Ampla , Esquizofrenia , Transcriptoma , Humanos , Retrovirus Endógenos/genética , Esquizofrenia/genética , Esquizofrenia/virologia , Transtorno Bipolar/genética , Fatores de Risco , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/virologia , Transtornos Mentais/genética , Encéfalo/metabolismo , Encéfalo/virologia , Feminino , Masculino , Predisposição Genética para Doença , Transtorno do Deficit de Atenção com Hiperatividade/genética , Adulto
2.
Mol Psychiatry ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811692

RESUMO

Social isolation has been linked to a range of psychiatric issues, but the behavioral component that drives it is not well understood. Here, a genome-wide associations study (GWAS) was carried out to identify genetic variants that contribute specifically to social isolation behavior (SIB) in up to 449,609 participants from the UK Biobank. 17 loci were identified at genome-wide significance, contributing to a 4% SNP-based heritability estimate. Using the SIB GWAS, polygenic risk scores (PRS) were derived in ALSPAC, an independent, developmental cohort, and used to test for association with self-reported friendship scores, comprising items related to friendship quality and quantity, at age 12 and 18 to determine whether genetic predisposition manifests during childhood development. At age 18, friendship scores were associated with the SIB PRS, demonstrating that the genetic factors can predict related social traits in late adolescence. Linkage disequilibrium (LD) score correlation using the SIB GWAS demonstrated genetic correlations with autism spectrum disorder (ASD), schizophrenia, major depressive disorder (MDD), educational attainment, extraversion, and loneliness. However, no evidence of causality was found using a conservative Mendelian randomization approach between SIB and any of the traits in either direction. Genomic Structural Equation Modeling (SEM) revealed a common factor contributing to SIB, neuroticism, loneliness, MDD, and ASD, weakly correlated with a second common factor that contributes to psychiatric and psychotic traits. Our results show that SIB contributes a small heritable component, which is associated genetically with other social traits such as friendship as well as psychiatric disorders.

3.
Comput Struct Biotechnol J ; 23: 174-185, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38146436

RESUMO

The immune response associated with oncogenesis and potential oncological ther- apeutic interventions has dominated the field of cancer research over the last decade. T-cell lymphocytes in the tumor microenvironment are a crucial aspect of cancer's adaptive immunity, and the quantification of T-cells in specific can- cer types has been suggested as a potential diagnostic aid. However, this is cur- rently not part of routine diagnostics. To address this challenge, we present a new method called True-T, which employs artificial intelligence-based techniques to quantify T-cells in colorectal cancer (CRC) using immunohistochemistry (IHC) images. True-T analyses the chromogenic tissue hybridization signal of three widely recognized T-cell markers (CD3, CD4, and CD8). Our method employs a pipeline consisting of three stages: T-cell segmentation, density estimation from the segmented mask, and prediction of individual five-year survival rates. In the first stage, we utilize the U-Net method, where a pre-trained ResNet-34 is em- ployed as an encoder to extract clinically relevant T-cell features. The segmenta- tion model is trained and evaluated individually, demonstrating its generalization in detecting the CD3, CD4, and CD8 biomarkers in IHC images. In the second stage, the density of T-cells is estimated using the predicted mask, which serves as a crucial indicator for patient survival statistics in the third stage. This ap- proach was developed and tested in 1041 patients from four reference diagnostic institutions, ensuring broad applicability. The clinical effectiveness of True-T is demonstrated in stages II-IV CRC by offering valuable prognostic information that surpasses previous quantitative gold standards, opening possibilities for po- tential clinical applications. Finally, to evaluate the robustness and broader ap- plicability of our approach without additional training, we assessed the universal accuracy of the CD3 component of the True-T algorithm across 13 distinct solid tumors.

4.
Nat Genet ; 56(1): 180-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123642

RESUMO

Here we present BridgePRS, a novel Bayesian polygenic risk score (PRS) method that leverages shared genetic effects across ancestries to increase PRS portability. We evaluate BridgePRS via simulations and real UK Biobank data across 19 traits in individuals of African, South Asian and East Asian ancestry, using both UK Biobank and Biobank Japan genome-wide association study summary statistics; out-of-cohort validation is performed in the Mount Sinai (New York) BioMe biobank. BridgePRS is compared with the leading alternative, PRS-CSx, and two other PRS methods. Simulations suggest that the performance of BridgePRS relative to PRS-CSx increases as uncertainty increases: with lower trait heritability, higher polygenicity and greater between-population genetic diversity; and when causal variants are not present in the data. In real data, BridgePRS has a 61% larger average R2 than PRS-CSx in out-of-cohort prediction of African ancestry samples in BioMe (P = 6 × 10-5). BridgePRS is a computationally efficient, user-friendly and powerful approach for PRS analyses in non-European ancestries.


Assuntos
Predisposição Genética para Doença , Estratificação de Risco Genético , Humanos , Fatores de Risco , Estudo de Associação Genômica Ampla , Teorema de Bayes , Polimorfismo de Nucleotídeo Único/genética , Herança Multifatorial/genética
5.
Oncogene ; 42(48): 3545-3555, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37875656

RESUMO

Digital pathology (DP), or the digitization of pathology images, has transformed oncology research and cancer diagnostics. The application of artificial intelligence (AI) and other forms of machine learning (ML) to these images allows for better interpretation of morphology, improved quantitation of biomarkers, introduction of novel concepts to discovery and diagnostics (such as spatial distribution of cellular elements), and the promise of a new paradigm of cancer biomarkers. The application of AI to tissue analysis can take several conceptual approaches, within the domains of language modelling and image analysis, such as Deep Learning Convolutional Neural Networks, Multiple Instance Learning approaches, or the modelling of risk scores and their application to ML. The use of different approaches solves different problems within pathology workflows, including assistive applications for the detection and grading of tumours, quantification of biomarkers, and the delivery of established and new image-based biomarkers for treatment prediction and prognostic purposes. All these AI formats, applied to digital tissue images, are also beginning to transform our approach to clinical trials. In parallel, the novelty of DP/AI devices and the related computational science pipeline introduces new requirements for manufacturers to build into their design, development, regulatory and post-market processes, which may need to be taken into account when using AI applied to tissues in cancer discovery. Finally, DP/AI represents challenge to the way we accredit new diagnostic tools with clinical applicability, the understanding of which will allow cancer patients to have access to a new generation of complex biomarkers.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Aprendizado de Máquina , Biomarcadores Tumorais , Oncologia , Neoplasias/diagnóstico
6.
GigaByte ; 2023: gigabyte89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711278

RESUMO

Recent advances in genome-wide association and sequencing studies have shown that the genetic architecture of complex traits and diseases involves a combination of rare and common genetic variants distributed throughout the genome. One way to better understand this architecture is to visualize genetic associations across a wide range of allele frequencies. However, there is currently no standardized or consistent graphical representation for effectively illustrating these results. Here we propose a standardized approach for visualizing the effect size of risk variants across the allele frequency spectrum. The proposed plots have a distinctive trumpet shape: with the majority of variants having high frequency and small effects, and a small number of variants having lower frequency and larger effects. To demonstrate the utility of trumpet plots in illustrating the relationship between the number of variants, their frequency, and the magnitude of their effects in shaping the genetic architecture of complex traits and diseases, we generated trumpet plots for more than one hundred traits in the UK Biobank. To facilitate their broader use, we developed an R package, 'TrumpetPlots' (available at the Comprehensive R Archive Network) and R Shiny application, 'Shiny Trumpets' (available at https://juditgg.shinyapps.io/shinytrumpets/) that allows users to explore these results and submit their own data.

7.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865148

RESUMO

Polygenic Risk Scores (PRS) have huge potential to contribute to biomedical research and to a future of precision medicine, but to date their calculation relies largely on Europeanancestry GWAS data. This global bias makes most PRS substantially less accurate in individuals of non-European ancestry. Here we present BridgePRS , a novel Bayesian PRS method that leverages shared genetic effects across ancestries to increase the accuracy of PRS in non-European populations. The performance of BridgePRS is evaluated in simulated data and real UK Biobank (UKB) data across 19 traits in African, South Asian and East Asian ancestry individuals, using both UKB and Biobank Japan GWAS summary statistics. BridgePRS is compared to the leading alternative, PRS-CSx , and two single-ancestry PRS methods adapted for trans-ancestry prediction. PRS trained in the UK Biobank are then validated out-of-cohort in the independent Mount Sinai (New York) Bio Me Biobank. Simulations reveal that BridgePRS performance, relative to PRS-CSx , increases as uncertainty increases: with lower heritability, higher polygenicity, greater between-population genetic diversity, and when causal variants are not present in the data. Our simulation results are consistent with real data analyses in which BridgePRS has better predictive accuracy in African ancestry samples, especially in out-of-cohort prediction (into Bio Me ), which shows a 60% boost in mean R 2 compared to PRS-CSx ( P = 2 × 10 -6 ). BridgePRS performs the full PRS analysis pipeline, is computationally efficient, and is a powerful method for deriving PRS in diverse and under-represented ancestry populations.

8.
Res Sq ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909642

RESUMO

Social-isolation has been linked to a range of psychiatric issues, but the behavioral component that drives it is not well understood. Here, a GWAS is carried out to identify genetic variants which contribute to Social-isolation behaviors in up to 449,609 participants from the UK Biobank. 17 loci were identified at genome-wide significance, contributing to a 4% SNP heritability estimate. Using the Social-isolation GWAS, polygenic risk scores (PRS) were derived in ALSPAC, an independent, developmental cohort, and used to test for association with friendship quality. At age 18, friendship scores were associated with the Social-isolation PRS, demonstrating that the genetic factors are able to predict related social traits. LD score regression using the GWAS demonstrated genetic correlation with autism spectrum disorder, schizophrenia, and major depressive disorder. However, no evidence of causality was found using a conservative Mendelian randomization approach other than that of autism spectrum disorder on Social-isolation. Our results show that Social-isolation has a small heritable component which may drive those behaviors which is associated genetically with other social traits such as friendship satisfaction as well as psychiatric disorders.

9.
medRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993466

RESUMO

Genetic studies of schizophrenia (SCZ) reveal a complex polygenic risk architecture comprised of hundreds of risk variants, the majority of which are common in the population at-large and confer only modest increases in disorder risk. Precisely how genetic variants with individually small predicted effects on gene expression combine to yield substantial clinical impacts in aggregate is unclear. Towards this, we previously reported that the combinatorial perturbation of four SCZ risk genes ("eGenes", whose expression is regulated by common variants) resulted in gene expression changes that were not predicted by individual perturbations, being most non-additive among genes associated with synaptic function and SCZ risk. Now, across fifteen SCZ eGenes, we demonstrate that non-additive effects are greatest within groups of functionally similar eGenes. Individual eGene perturbations reveal common downstream transcriptomic effects ("convergence"), while combinatorial eGene perturbations result in changes that are smaller than predicted by summing individual eGene effects ("sub-additive effects"). Unexpectedly, these convergent and sub-additive downstream transcriptomic effects overlap and constitute a large proportion of the genome-wide polygenic risk score, suggesting that functional redundancy of eGenes may be a major mechanism underlying non-additivity. Single eGene perturbations likewise fail to predict the magnitude or directionality of cellular phenotypes resulting from combinatorial perturbations. Overall, our results indicate that polygenic risk cannot be extrapolated from experiments testing one risk gene at a time and must instead be empirically measured. By unravelling the interactions between complex risk variants, it may be possible to improve the clinical utility of polygenic risk scores through more powerful prediction of symptom onset, clinical trajectory, and treatment response, or to identify novel targets for therapeutic intervention.

10.
PLoS Genet ; 19(2): e1010624, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36749789

RESUMO

Polygenic risk scores (PRSs) have been among the leading advances in biomedicine in recent years. As a proxy of genetic liability, PRSs are utilised across multiple fields and applications. While numerous statistical and machine learning methods have been developed to optimise their predictive accuracy, these typically distil genetic liability to a single number based on aggregation of an individual's genome-wide risk alleles. This results in a key loss of information about an individual's genetic profile, which could be critical given the functional sub-structure of the genome and the heterogeneity of complex disease. In this manuscript, we introduce a 'pathway polygenic' paradigm of disease risk, in which multiple genetic liabilities underlie complex diseases, rather than a single genome-wide liability. We describe a method and accompanying software, PRSet, for computing and analysing pathway-based PRSs, in which polygenic scores are calculated across genomic pathways for each individual. We evaluate the potential of pathway PRSs in two distinct ways, creating two major sections: (1) In the first section, we benchmark PRSet as a pathway enrichment tool, evaluating its capacity to capture GWAS signal in pathways. We find that for target sample sizes of >10,000 individuals, pathway PRSs have similar power for evaluating pathway enrichment as leading methods MAGMA and LD score regression, with the distinct advantage of providing individual-level estimates of genetic liability for each pathway -opening up a range of pathway-based PRS applications, (2) In the second section, we evaluate the performance of pathway PRSs for disease stratification. We show that using a supervised disease stratification approach, pathway PRSs (computed by PRSet) outperform two standard genome-wide PRSs (computed by C+T and lassosum) for classifying disease subtypes in 20 of 21 scenarios tested. As the definition and functional annotation of pathways becomes increasingly refined, we expect pathway PRSs to offer key insights into the heterogeneity of complex disease and treatment response, to generate biologically tractable therapeutic targets from polygenic signal, and, ultimately, to provide a powerful path to precision medicine.


Assuntos
Genômica , Herança Multifatorial , Humanos , Fatores de Risco , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla , Software , Predisposição Genética para Doença
11.
Comput Struct Biotechnol J ; 20: 5547-5563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249564

RESUMO

The development of gene signatures is key for delivering personalized medicine, despite only a few signatures being available for use in the clinic for cancer patients. Gene signature discovery tends to revolve around identifying a single signature. However, it has been shown that various highly predictive signatures can be produced from the same dataset. This study assumes that the presentation of top ranked signatures will allow greater efforts in the selection of gene signatures for validation on external datasets and for their clinical translation. Particle swarm optimization (PSO) is an evolutionary algorithm often used as a search strategy and largely represented as binary PSO (BPSO) in this domain. BPSO, however, fails to produce succinct feature sets for complex optimization problems, thus affecting its overall runtime and optimization performance. Enhanced BPSO (EBPSO) was developed to overcome these shortcomings. Thus, this study will validate unique candidate gene signatures for different underlying biology from EBPSO on transcriptomics cohorts. EBPSO was consistently seen to be as accurate as BPSO with substantially smaller feature signatures and significantly faster runtimes. 100% accuracy was achieved in all but two of the selected data sets. Using clinical transcriptomics cohorts, EBPSO has demonstrated the ability to identify accurate, succinct, and significantly prognostic signatures that are unique from one another. This has been proposed as a promising alternative to overcome the issues regarding traditional single gene signature generation. Interpretation of key genes within the signatures provided biological insights into the associated functions that were well correlated to their cancer type.

12.
Cancers (Basel) ; 14(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010903

RESUMO

In this article, we propose ICOSeg, a lightweight deep learning model that accurately segments the immune-checkpoint biomarker, Inducible T-cell COStimulator (ICOS) protein in colon cancer from immunohistochemistry (IHC) slide patches. The proposed model relies on the MobileViT network that includes two main components: convolutional neural network (CNN) layers for extracting spatial features; and a transformer block for capturing a global feature representation from IHC patch images. The ICOSeg uses an encoder and decoder sub-network. The encoder extracts the positive cell's salient features (i.e., shape, texture, intensity, and margin), and the decoder reconstructs important features into segmentation maps. To improve the model generalization capabilities, we adopted a channel attention mechanism that added to the bottleneck of the encoder layer. This approach highlighted the most relevant cell structures by discriminating between the targeted cell and background tissues. We performed extensive experiments on our in-house dataset. The experimental results confirm that the proposed model achieves more significant results against state-of-the-art methods, together with an 8× reduction in parameters.

13.
Digit Health ; 8: 20552076221105484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694121

RESUMO

Objectives: eHealth refers to health services and health information delivered or enhanced through the internet and related technologies. The number of eHealth interventions for chronic pain self-management is increasing. However, little evidence has been found for the overall efficacy of these interventions for older adults. The aim of the current study was to use a Collective Intelligence approach to identify the barriers and specific user needs of middle-aged and older adults using eHealth for chronic pain self-management. Methods: A Collective Intelligence workshop was conducted with middle-aged and older adults to generate, clarify, select, and structure ideas in relation to barriers to eHealth use and specific design requirements for the purposes of chronic pain self-management. Prior to attending the workshop, participants received a trigger question requesting the identification of five barriers to eHealth use for chronic pain self-management. These barriers were categorised and presented to the group along with barrier-related scenarios and user need prompts, resulting in the generation of a set of ranked barriers and a set of user needs. Results: A total of 78 barriers were identified, from which six categories emerged: Content, Support, Technological, Personal, Computer Literacy and Accessibility. Additional idea-writing and group reflection in response to these barriers revealed 97 user needs. Conclusion: This is the first study to use Collective Intelligence methods to investigate barriers to eHealth technology use and the specific user needs of middle-aged and older adults in the context of chronic pain self-management. The results of the current study provide a platform for the design and development of enhanced eHealth interventions for this population.

14.
Ann Am Thorac Soc ; 19(11): 1818-1826, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35713619

RESUMO

Rationale: The etiology of cystic fibrosis (CF) pulmonary exacerbations (PEx) is likely multifactorial with viral, bacterial, and non-infectious pathways contributing. Objectives: To determine whether viral infection status and CRP (C-reactive protein) can classify subphenotypes of PEx that differ in outcomes and biomarker profiles. Methods: Patients were recruited at time of admission for a PEx. Nasal swabs and sputum samples were collected and processed using the respiratory panel of the FilmArray multiplex polymerase chain reaction (PCR). Serum and plasma biomarkers were measured. PEx were classified using serum CRP and viral PCR: "pauci-inflammatory" if CRP < 5 mg/L, "non-viral with systemic inflammation" if CRP ⩾ 5 mg/L and no viral infection detected by PCR and "viral with systemic inflammation" if CRP ⩾ 5 mg/L and viral infection detected by PCR. Results: Discovery cohort (n = 59) subphenotype frequencies were 1) pauci-inflammatory (37%); 2) non-viral with systemic inflammation (41%); and 3) viral with systemic inflammation (22%). Immunoglobulin G, immunoglobulin M, interleukin-10, interleukin-13, serum calprotectin, and CRP levels differed across phenotypes. Reduction from baseline in forced expiratory volume in 1 second as percent predicted (FEV1pp) at onset of exacerbation differed between non-viral with systemic inflammation and viral with systemic inflammation (-6.73 ± 1.78 vs. -13.5 ± 2.32%; P = 0.025). Non-viral with systemic inflammation PEx had a trend toward longer duration of intravenous antibiotics versus pauci-inflammation (18.1 ± 1.17 vs. 14.8 ± 1.19 days, P = 0.057). There were no differences in percent with lung function recovery to <10% of baseline FEV1pp. Similar results were seen in local and external validation cohorts comparing a pauci-inflammatory to viral/non-viral inflammatory exacerbation phenotypes. Conclusions: Subphenotypes of CF PEx exist with differences in biomarker profile, clinical presentation, and outcomes.


Assuntos
Fibrose Cística , Humanos , Pulmão , Proteína C-Reativa/metabolismo , Antibacterianos/uso terapêutico , Biomarcadores , Inflamação/tratamento farmacológico , Fenótipo , Progressão da Doença
15.
Diagnostics (Basel) ; 12(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626427

RESUMO

Integrating artificial intelligence (AI) tools in the tissue diagnostic workflow will benefit the pathologist and, ultimately, the patient. The generation of such AI tools has two parallel and yet interconnected processes, namely the definition of the pathologist's task to be delivered in silico, and the software development requirements. In this review paper, we demystify this process, from a viewpoint that joins experienced pathologists and data scientists, by proposing a general pathway and describing the core steps to build an AI digital pathology tool. In doing so, we highlight the importance of the collaboration between AI scientists and pathologists, from the initial formulation of the hypothesis to the final, ready-to-use product.

16.
Front Endocrinol (Lausanne) ; 13: 863893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592775

RESUMO

Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome and are used to predict risk of complex diseases, such as obesity. Current PRSs only include common variants (minor allele frequency (MAF) ≥1%), whereas the contribution of rare variants in PRSs to predict disease remains unknown. Here, we examine whether augmenting the standard common variant PRS (PRScommon) with a rare variant PRS (PRSrare) improves prediction of obesity. We used genome-wide genotyped and imputed data on 451,145 European-ancestry participants of the UK Biobank, as well as whole exome sequencing (WES) data on 184,385 participants. We performed single variant analyses (for both common and rare variants) and gene-based analyses (for rare variants) for association with BMI (kg/m2), obesity (BMI ≥ 30 kg/m2), and extreme obesity (BMI ≥ 40 kg/m2). We built PRSscommon and PRSsrare using a range of methods (Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected the best-performing PRSs and assessed their performance in 36,757 European-ancestry unrelated participants with whole genome sequencing (WGS) data from the Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRScommon explained 10.1% of variation in BMI, and 18.3% and 22.5% of the susceptibility to obesity and extreme obesity, respectively, whereas the best-performing PRSrare explained 1.49%, and 2.97% and 3.68%, respectively. The PRSrare was associated with an increased risk of obesity and extreme obesity (ORobesity = 1.37 per SDPRS, Pobesity = 1.7x10-85; ORextremeobesity = 1.55 per SDPRS, Pextremeobesity = 3.8x10-40), which was attenuated, after adjusting for PRScommon (ORobesity = 1.08 per SDPRS, Pobesity = 9.8x10-6; ORextremeobesity= 1.09 per SDPRS, Pextremeobesity = 0.02). When PRSrare and PRScommon are combined, the increase in explained variance attributed to PRSrare was small (incremental Nagelkerke R2 = 0.24% for obesity and 0.51% for extreme obesity). Consistently, combining PRSrare to PRScommon provided little improvement to the prediction of obesity (PRSrare AUC = 0.591; PRScommon AUC = 0.708; PRScombined AUC = 0.710). In summary, while rare variants show convincing association with BMI, obesity and extreme obesity, the PRSrare provides limited improvement over PRScommon in the prediction of obesity risk, based on these large populations.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Frequência do Gene , Variação Genética , Humanos , Obesidade/epidemiologia , Obesidade/genética , Sequenciamento Completo do Genoma
19.
BMC Med ; 20(1): 34, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101027

RESUMO

BACKGROUND: Greater maternal adiposity before or during pregnancy is associated with greater offspring adiposity throughout childhood, but the extent to which this is due to causal intrauterine or periconceptional mechanisms remains unclear. Here, we use Mendelian randomisation (MR) with polygenic risk scores (PRS) to investigate whether associations between maternal pre-/early pregnancy body mass index (BMI) and offspring adiposity from birth to adolescence are causal. METHODS: We undertook confounder adjusted multivariable (MV) regression and MR using mother-offspring pairs from two UK cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC) and Born in Bradford (BiB). In ALSPAC and BiB, the outcomes were birthweight (BW; N = 9339) and BMI at age 1 and 4 years (N = 8659 to 7575). In ALSPAC only we investigated BMI at 10 and 15 years (N = 4476 to 4112) and dual-energy X-ray absorptiometry (DXA) determined fat mass index (FMI) from age 10-18 years (N = 2659 to 3855). We compared MR results from several PRS, calculated from maternal non-transmitted alleles at between 29 and 80,939 single nucleotide polymorphisms (SNPs). RESULTS: MV and MR consistently showed a positive association between maternal BMI and BW, supporting a moderate causal effect. For adiposity at most older ages, although MV estimates indicated a strong positive association, MR estimates did not support a causal effect. For the PRS with few SNPs, MR estimates were statistically consistent with the null, but had wide confidence intervals so were often also statistically consistent with the MV estimates. In contrast, the largest PRS yielded MR estimates with narrower confidence intervals, providing strong evidence that the true causal effect on adolescent adiposity is smaller than the MV estimates (Pdifference = 0.001 for 15-year BMI). This suggests that the MV estimates are affected by residual confounding, therefore do not provide an accurate indication of the causal effect size. CONCLUSIONS: Our results suggest that higher maternal pre-/early-pregnancy BMI is not a key driver of higher adiposity in the next generation. Thus, they support interventions that target the whole population for reducing overweight and obesity, rather than a specific focus on women of reproductive age.


Assuntos
Adiposidade/genética , Obesidade/genética , Adolescente , Alelos , Índice de Massa Corporal , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Estudos Longitudinais , Obesidade/etiologia , Gravidez , Fatores de Risco , Reino Unido
20.
Am J Hum Genet ; 109(1): 12-23, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995502

RESUMO

The low portability of polygenic scores (PGSs) across global populations is a major concern that must be addressed before PGSs can be used for everyone in the clinic. Indeed, prediction accuracy has been shown to decay as a function of the genetic distance between the training and test cohorts. However, such cohorts differ not only in their genetic distance but also in their geographical distance and their data collection and assaying, conflating multiple factors. In this study, we examine the extent to which PGSs are transferable between ancestries by deriving polygenic scores for 245 curated traits from the UK Biobank data and applying them in nine ancestry groups from the same cohort. By restricting both training and testing to the UK Biobank data, we reduce the risk of environmental and genotyping confounding from using different cohorts. We define the nine ancestry groups at a sub-continental level, based on a simple, robust, and effective method that we introduce here. We then apply two different predictive methods to derive polygenic scores for all 245 phenotypes and show a systematic and dramatic reduction in portability of PGSs trained using Northwestern European individuals and applied to nine ancestry groups. These analyses demonstrate that prediction already drops off within European ancestries and reduces globally in proportion to genetic distance. Altogether, our study provides unique and robust insights into the PGS portability problem.


Assuntos
Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Genética Populacional/métodos , Herança Multifatorial , Algoritmos , Alelos , Bancos de Espécimes Biológicos , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...